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The first order reliability method (FORM) is efficient, but it has limited accuracy; the second order reli-
ability method (SORM) provides greater accuracy, but with additional computational effort. In this study,
a new method which integrates two quasi-Newton approximation algorithms is proposed to efficiently
estimate the second order reliability of geotechnical problems with reasonable accuracy. In particular,
the Hasofer–Lind–Rackwitz–Fiessler–Broyden–Fletcher–Goldfarb–Shanno (HLRF–BFGS) algorithm is
applied to identify the design point on the limit state function (LSF), and consequently to compute the
first order reliability index; whereas the Symmetric Rank-one (SR1) algorithm is nested within the
HLRF–BFGS algorithm to compute good approximations, yet with a reduced computational effort, of
the Hessian matrix required to compute second order reliabilities. Three typical geotechnical problems
are employed to demonstrate the ability of the suggested procedure, and advantages of the proposed
approach with respect to conventional alternatives are discussed. Results show that the proposed method
is able to achieve the accuracy of conventional SORM, but with a reduced computational cost that is equal
to the computational cost of HLRF–BFGS-based FORM.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Reliability analyses have been proposed as a rational comple-
ment to deterministic geotechnical design [1], as they can more
directly quantify the influence of the uncertainty about input
parameters and their correlation relationships (see e.g., [2,3]).

Due to its simplicity and efficiency, the first order reliability
method (FORM)—that linearly approximates the limit state func-
tion (LSF) to estimate the probability of failure—has been widely
used in geotechnical reliability analyses (see e.g., [4–7]). However,
the linearization that is inherent to FORM introduces errors in
many cases (see e.g., [7,8]), and the second order reliability method
(SORM)—which extends FORM to consider the curvatures of the
LSF, hence providing a better approximation—has also been
employed as an alternative.

Brzakała and Puła [9] and Bauer and Puła [10] analyzed the
probability of foundation settlements exceeding an allowable
threshold using SORM and a polynomial response surface method
(RSM)-based SORM, respectively; Cho [11] combined an artificial
neural network (ANN)-based RSM and SORM to compute the reli-
ability of slopes; Lü and co-authors [2,12,13] employed various
RSMs with SORM to analyze tunnel supports; Chan and Low [14]
introduced a practical SORM for foundation reliability analysis
using a point-fitted paraboloid method; and Zeng and co-authors
[8,15] applied SORM to evaluate the system reliability of tunnels
and slopes, respectively. However, these methods are often more
computationally expensive than FORM, due to the need to evaluate
the curvatures of the LSF or to construct the response surface
function. Therefore, an approach that aims to combine the higher
accuracy of SORM-based reliability solutions with the lower
computational cost of traditional FORM-based approaches is
considered as a useful contribution to the geotechnical field.

This paper proposes an attempt in that direction. In particular,
our proposed approach uses the recently proposed Hasofer–Lind–
Rackwitz–Fiessler–Broyden–Fletcher–Goldfarb–Shanno (HLRF–
BGFS) algorithm [16] to locate the FORM design point efficiently;
and it integrates such algorithm with the Symmetric Rank-one
(SR1) algorithm [17] to approximate the Hessian matrix (i.e., the
second order derivative matrix). The goal is that the identified
design point can be used, together with the approximated Hessian
matrix, to efficiently estimate the second order probability of
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failure. Details of the algorithms are discussed first, and then the
performance of the proposed method is tested using three typical
geotechnical example cases taken from the literature.

2. Conventional SORM

Conventional SORM estimates the second order probability of
failure using (i) the design point and gradient information com-
puted by FORM and (ii) the Hessian matrix computed using finite
differences. For completeness, traditional methods to compute
FORM solutions and the Hessian matrix, as well as to compute
the SORM reliability based on them, are discussed below. Addi-
tional details can be found in traditional reliability references such
as [18] and [19].

2.1. The first order reliability method (FORM)

The FORM reliability analysis of a LSF defined by GðxÞ ¼ 0,
where x is a vector of random variables in physical space can be
tackled in different ways. One possibility is to solve it in the orig-
inal space using standard mathematical software [20], although
it is probably more common to transform the vector x into a space
of uncorrelated standard normal random variables, u, so that the
limit state surface can be rewritten as gðuÞ ¼ 0. Then, FORM aims
to find the point on gðuÞ ¼ 0 with shortest distance to the origin,
as the neighborhood of such ‘‘design point” has the greatest contri-
bution to the probability of failure. In other words, the problem is
equivalent to solve the following constrained optimization prob-
lem [6]:

u� ¼ min
u

kuk subject to gðuÞ ¼ 0 ð1Þ

where k � k is the norm of a vector. Then, the reliability index, b, can
be computed as

b ¼ ku�k ð2Þ
and the probability of failure can be approximated as

Pf � Uð�bÞ ð3Þ
Although direct optimization using standard mathematical soft-

ware is possible (see e.g., the MATLAB fmincon function employed
in [19] and the spreadsheet method employed in [21]), specific
algorithms such as Hasofer–Lind–Rackwitz–Flessler (HLRF)-based
algorithms have often been proposed to solve Eq. (1) (see e.g.,
[22–26]). Among them, the improved HLRF (iHLRF) algorithm
[25]—a tradeoff between efficiency and accuracy—is probably the
more commonly used in engineering practice (see e.g., [4,6]), and
it will also be employed in this study for comparison. Here, we dis-
cuss some aspects related to its computational efficiency; addi-
tional details of the algorithm can be found in [25]. In the iHLRF
algorithm, the gradient vector, rgðuÞ, needed to search the design
point, can be approximated using a forward difference scheme,
given as

rgðuÞi �
gðui þ DhÞ � gðuiÞ

Dh
ð4Þ

where Dh is the step size, subscript i indicates the ith element of a
vector, and gðui þ DhÞ is a notation convention to indicate the eval-
uation of gð�Þ at a vector equal to u, except for its ith component,
which is equal to ui þ Dh.

2.2. Computing the Hessian matrix

In addition to the design point and gradient information com-
puted by FORM, an additional effort is required in SORM to com-
pute the Hessian matrix at the design point, u�. In engineering
practice, when analytical solutions are commonly not available,
the Hessian matrix, H, may be computed using a forward finite dif-
ference scheme given by (see e.g., [27,28])

Hði; iÞ � gðu�
i þ 2DhÞ � 2gðu�

i þ DhÞ þ gðu�
i Þ

Dh2 ð5Þ
Hði; jÞ � gðu�
i þDh;u�

j þDhÞ � gðu�
i þDh;u�

j Þ � gðu�
i ;u

�
j þDhÞþ gðu�

i ;u
�
j Þ

Dh2

ð6Þ

where gðu�
i þ Dh;u�

j þ DhÞ is a generalization of the previously
explained notation that indicates that both the ith and jth compo-
nents of u� are increased by Dh. Note that gðu�

i þ DhÞ, gðu�
i Þ,

gðu�
i þ Dh;u�

j Þ, gðu�
i ;u

�
j þ DhÞ and gðu�

i ;u
�
j Þ in Eqs. (5) and (6), are

already available from the last iteration of the iHLRF algorithm.
Therefore, only gðu�

i þ 2DhÞ and gðu�
i þ Dh;u�

j þ DhÞ are needed to
compute the Hessian matrix. Additionally, H is symmetric, so that
Hði; jÞ ¼ Hðj; iÞ. Thus, nðnþ 1Þ=2 new LSF evaluations are theoreti-
cally required to compute the Hessian matrix in conventional
SORM. This could significantly increase the computational cost, par-
ticularly for a large number of random variables and an ‘expensive’
LSF.
2.3. Estimating the second order probability of failure

Prior to computing the second order probability of failure, ran-
dom variables in the U-space should be further transformed, to a
rotated standard normal V-space, using an orthogonal transforma-
tion V ¼ PU, where P is an n� n orthogonal rotation matrix whose
nth column is a ða ¼ u�=ku�kÞ and that can be obtained using
Gram-Schmidt orthogonalization [29]. After rotating the coordi-
nates, a rotated diagonal Hessian matrix, Hrot, can be obtained as:

Hrot ¼ P � H
krgðu�Þk � P

T ð7Þ

where rgðu�Þ is the gradient vector at the design point (available
from the last iteration of the iHLRF algorithm). The principal curva-
tures, ji, of the LSF at the design point are the first n� 1 diagonal
elements of Hrot; i.e.,

ji ¼ ½Hrot�ii ði ¼ 1;2; . . . ;n� 1Þ ð8Þ
Various formulas have been proposed to evaluate the second

order probability of failure with such principal curvatures, ji (see
e.g., [19,30–37]). (For brevity, they are not reviewed herein,
although they will be employed in the computations presented
later.)
3. A proposed quasi-Newton approximation-based SORM

In our approach, two types of quasi-Newton approximation—
the BFGS and SR1 algorithms—are combined for a more efficient
estimation of the second order probability of failure. (Quasi-
Newton methods are alternatives to ‘‘full” Newton methods, which
approximate the Hessian matrices needed at every iteration of
gradient-based optimization approaches [38].) In particular, the
BFGS algorithm is used, together with the original HLRF algorithm
proposed by Hasofer and Lind [22] and Rackwitz and Flessler [23],
to search the design point and to compute the first order reliability
index, whereas the SR1 algorithm is nested within the BFGS algo-
rithm to approximate the Hessian matrix. Details are illustrated
below.
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3.1. The HLRF–BFGS algorithm to solve FORM

To compute the second order probability of failure, an efficient
FORM with good convergence behavior is of interest. Recently,
Periçaro et al. [16] proposed using the BFGS algorithm to search
the design point in FORM. This algorithm, referred to as the
HLRF–BFGS algorithm, has the advantage of incorporating the
information about curvatures of the LSF, thus being more robust
and efficient than other HLRF-based algorithms, particularly when
finite element analyses are involved (see e.g., [16,26]). In addition,
the HLRF–BFGS algorithm is as efficient as the original HLRF algo-
rithm [22,23], since it requires just one function and gradient eval-
uation at each iteration; therefore requiring only kðnþ 1Þ LSF
evaluations (k is the number of iterations). The HLRF–BFGS algo-
rithm employs a search direction given by

dk ¼
rgðuk�1ÞTBBFGS

k�1 uk�1 � gðuk�1Þ
h i

BBFGS
k�1 rgðuk�1Þ

rgðuk�1ÞTBBFGS
k�1 rgðuk�1Þ

� BBFGS
k�1 uk�1 ð9Þ

where, for convenience, subscripts related to k are employed to
indicate values of vectors or matrices at different iterations, and
where BBFGS is the inverse of the Hessian matrix (i.e.,

BBFGS ¼ ðHBFGSÞ�1
), which is approximately computed using a recur-

sive BFGS updating formula:

BBFGS
k ¼ BBFGS

k�1 þ 1þ qT
kB

BFGS
k�1 qk

pT
kqk

 !
pkpT

k

pT
kqk

� pkqT
kB

BFGS
k�1 þ BBFGS

k�1 qkpT
k

pT
kqk

ð10Þ
where

pk ¼ dk ð11Þ

qk ¼ dk þ ½rgðukÞ � rgðuk�1Þ�nk ð12Þ
and nk is given by

nk ¼
gðuk�1Þ � rgðuk�1ÞTBBFGS

k�1 uk�1

rgðuk�1ÞTBBFGS
k�1 rgðuk�1Þ

ð13Þ

Thus, the design point for a new iteration can be computed as

uk ¼ uk�1 þ dk ð14Þ
so that the algorithm repeats the sequence until the following stop-
ping criteria are satisfied:

1� jrgðukÞTukj
krgðukÞk � kukk < e and jgðukÞj < e ð15Þ
3.2. The SR1 quasi-Newton method to approximate the Hessian matrix

As shown in the previous section, the HLRF–BFGS algorithm
uses the design point and the gradient vector between two succes-
sive iterations to compute the Hessian matrix approximately; then,
this approximated Hessian matrix, HBFGS, might be used instead of
the true Hessian matrix to estimate the second order probability of
failure. However, as indicated by some researchers (see e.g.,
[17,27,38]), the SR1 algorithm can often outperform the BFGS
algorithm in providing good approximations to the true Hessian
matrix. Therefore, the SR1 algorithm is used in this study to
evaluate the Hessian matrix employed in second order reliability
analyses. Such Hessian matrix is obtained as [17,38]:

HSR1
k ¼ HSR1

k�1 þ
ðyk �HSR1

k�1skÞðyk �HSR1
k�1skÞ

T

ðyk �HSR1
k�1skÞ

T
sk

ð16Þ
where

sk ¼ dk ð17Þ

yk ¼ rgðukÞ � rgðuk�1Þ ð18Þ
To preserve the numerical stability of the SR1 algorithm, a safe-

guard is required; it is given by [17,38]

jsTkðyk �HSR1
k�1skÞj > gkskkkyk �HSR1

k�1skk ð19Þ
where g is a very small positive number (e.g., g ¼ 10�6 � 10�8). The
SR1 update is performed only if Eq. (19) holds; otherwise the
update is skipped (i.e., HSR1

k ¼ HSR1
k�1).

3.3. Implementation procedure

To facilitate the understanding of the quasi-Newton
approximation-based SORM, and to promote its wider future use,
its implementation is detailed below (see also the flowchart in
Fig. 1):

(1) k ¼ 0.
(2) Apply initial guesses to u and BBFGS (e.g., using u0 ¼ 0 and

BBFGS
0 ¼ I). Compute the gradient vector, rgðu0Þ, using a for-

ward difference scheme.
(3) Make k ¼ kþ 1. Compute the search direction vector, dk, and

the coefficient, nk, with Eqs. (9) and (13), respectively.
(4) Evaluate the new design point, uk, using Eq. (14); and the

new gradient vector, rgðukÞ, using Eq. (4).
(5) Compute pk; qk; sk and yk using Eqs. (11), (12), (17) and

(18).
(6) If k ¼ 1, apply an initial scaling of ST1Y1=S

T
1S1I to HSR1

0 ; other-
wise, skip. (A detailed discussion of the scaling needed to
make the SR1 algorithm more robust is outside the scope
of this paper; for details and further discussion, see e.g.,
[39].)

(7) Compute the new BBFGS
k with Eq. (10).

(8) Evaluate the safe-guard in Eq. (19): if it holds, update the
Hessian matrix, HSR1

k , using Eq. (16); otherwise, make

HSR1
k ¼ HSR1

k�1.

Repeat Steps 2–7 until the stopping criteria in Eq. (15) are both
achieved. Then, the first order reliability index, bFORM, can be easily
computed as bFORM ¼ kukk. And, consequently, the second order
probability of failure can be estimated using the SORM methods
proposed in the references cited in Section 2.3, which are all based
on the information obtained above (uk, bFORM, rgðukÞ and HSR1

k ).
The reader should note that, except for evaluations required by

the HLRF–BFGS algorithm, no additional LSF evaluation is needed
in the quasi-Newton approximation-based SORM. Therefore, only
kðnþ 1Þ LSF evaluations are needed in our proposed method,
instead of the kðnþ 1Þ þ nadd þ nðnþ 1Þ=2 evaluations needed in
traditional SORM (nadd is the total number of additional LSF evalu-
ations needed to compute the merit function and to select the step
size in the iHLRF algorithm).

4. Case studies

The reliability of three typical geotechnical problems—settle-
ment of a rectangular foundation, bearing capacity of a shallow
footing, and stability of a layered soil slope—are considered in this
study as benchmark tests of the proposed method, in which the
iHLRF algorithm, the HLRF–BFGS algorithm, and conventional
SORM are employed for comparison with our proposed method.
The same convergence criteria given in Eq. (15), with e ¼ 0:001,



Fig. 1. A flowchart to illustrate the implementation procedure of quasi-Newton approximation-based SORM.
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are used for these four methods to make results comparable. Note
that lack of information about convergence criteria prevents us
from being able to compare results with other results published
in the literature, as efficiency and accuracy depend to a large
extent on such criteria; instead, we use our own implementations
of the algorithms discussed (with results computed for the same
convergence criteria), as well as the results of Monte Carlo simula-
tions (MCS) as the ‘reference’ or ‘exact’ solutions.

To estimate the second order probability of failure, the average
of seven formulas based on the same information (i.e., bFORM and ji)
is used in this study. The formulas are those proposed by Tvedt
[30], Breitung [31], Hohenbichler and Rackwitz [32], Hong [35]
(who provides two formulas), Zhao and Ono [36] and Phoon [19].

To measure computational efficiency, we use the number of
deterministic LSF evaluations (FEs) required in each analysis. This
is because the computational effort demanded by other parts of
the algorithm is often negligible when compared to that needed
by LSF evaluations, particularly when expensive numerical meth-
ods (such as finite elements or finite differences) are involved.
Thus, the number of FEs can be used as a general indicator of the
computational efficiency in real problems: a larger number of FEs
indicates less efficiency, and vice versa.



Table 1
Computed reliability results for the rectangular foundation example.

n ¼ 3 random variables FEa b Pf D (%)b

FORM iHLRF 20c 1.237 0.1081 13.1
HLRF–BFGS 16c 1.237 0.1081 13.1

SORM Conventional 20c + 6d 1.301 0.0967 1.2
This study 16c + 0d 1.299 0.0970 1.5

MCS 500,000 1.307 0.0956 –

a FE = Number of deterministic function evaluations.
b D = Relative error in relation to MCS, computed based on the results of Pf.
c Number of FE required by FORM.
d Number of FE required for computing Hessian matrix.

Table 2
Hessian matrices computed by different methods for the rectangular foundation
example.

Forward difference scheme SR1 algorithm

0.000 0.689 0.321 �0.025 0.703 0.342
0.689 1.178 �0.276 0.703 1.168 �0.289
0.321 �0.276 �0.255 0.342 �0.289 �0.307

P. Zeng et al. / Computers and Geotechnics 76 (2016) 33–42 37
4.1. Immediate settlement of a rectangular foundation

We start with a case considering the immediate settlement of a
flexible rectangular foundation; see Fig. 2. This case was previously
studied by Chan and Low [14], using a point-fitted paraboloid-
based SORM. The settlement DH of a flexible rectangular founda-
tion can be computed as [14]:

DH ¼ 0:5Bq	
1� m2

Es
m I1 þ 1� 2m

1� m
I2

� �
IF ð20Þ

Magnitudes used in Eq. (20) are illustrated in Fig. 2 together
with their prescribed values. Then, the LSF for a limiting settlement
of ðDHÞlimit ¼ 50 mm can be written as

GðxÞ ¼ ðDHÞlimit � DH ð21Þ
Three random variables (i.e., contact stress qo, Poisson’s ratio m

and elastic modulus Es) are considered in this study. They are
assumed to be independent and normally distributed; their means
and standard deviations are listed in Fig. 2. Further details are
available in Chan and Low [14].

Table 1 lists the number of LSF evaluations and the reliability
results computed by different methods, including MCS with
500,000 simulations. The two FORM algorithms (iHLRF and
HLRF–BFGS) provide identical probabilities of failure, with a slight
relative error of 13.1% with respect to the MCS result, hence imply-
ing that the LSF is slightly non-linear. Pf estimates improve after
considering the curvatures of the LSF at the vicinity of the design
point, and both conventional SORM and the method proposed in
this study approximate well to the MCS result, with differences
of only 1.2% and 1.5%, respectively.

Regarding the computational cost, the proposed method needs
only 16 FEs, which is the least among all the methods considered.
Such good efficiency is due to two aspects: one is that the HLRF–
BFGS algorithm outperforms the iHLRF algorithm in finding the
design point; the other is that the FEs needed to compute the Hes-
sian matrix in conventional SORM are not needed with our pro-
posed method. In summary, the proposed method provides a
very similar Pf result to conventional SORM, but with approxi-
mately 40% fewer FEs.

Table 2 compares the Hessian matrices evaluated using the tra-
ditional forward difference scheme and the SR1 algorithm, respec-
tively, showing that their elements agree well with each other. This
explains the good performance of our proposed method.
Fig. 2. Description of the rectangular foundation a
4.2. Bearing capacity of a shallow footing

The second example case, also proposed by Chan and Low [14],
considers the bearing capacity of a shallow footing resting on an
homogeneous silty sand; see Fig. 3. The LSF due to exceedance of
its bearing capacity is given as

GðxÞ ¼ qult � q ð22Þ

where qult is the vertical bearing resistance computed with the well-
known polynomial bearing capacity equation; and q is the vertical
applied pressure (corrected to account for the excentricity of the
loads). Equations to compute qult and q are summarized in Appendix
A, and more details about them can be found in [14]. Five random
variables—cohesion, c0; friction angle, u0; unit weight, c; horizontal
load, PH; and vertical load, PV—are considered, and they are all
assumed to be normally distributed. Their moments and correlation
structure are shown in Fig. 3, together with the deterministic
parameters involved.

Table 3 presents the number of LSF evaluations and the reliabil-
ity results computed using the five different reliability methods
nd of the parameters and variables involved.



Fig. 3. Description of the shallow footing example and of the parameters and variables involved.

Table 3
Computed reliability results for the shallow footing example.

n ¼ 3 random variables FEa b Pf ð�10�2Þ D (%)b

FORM iHLRF 42c 1.641 5.04 �18.3
HLRF–BFGS 42c 1.641 5.04 �18.3

SORM Conventional 42c + 15d 1.569 5.83 �5.5
This study 42c + 0d 1.571 5.81 �5.8

MCS 500,000 1.541 6.17 –

a FE = Number of deterministic function evaluations.
b D = Relative error in relation to MCS, computed based on the results of Pf.
c Number of FE required by FORM.
d Number of FE required for computing Hessian matrix.

Table 4
Hessian matrices computed using different algorithms for the shallow footing
example.

Forward difference formula
�10.913 �10.612 �3.250 4.372 �4.618
�10.612 66.687 7.804 �8.902 9.211
�3.250 7.804 0.000 �0.817 0.854
4.372 �8.902 �0.817 �1.246 4.049

�4.618 9.211 0.854 4.049 �9.083

SR1 algorithm
�11.446 �10.085 �3.590 4.827 �5.128
�10.085 64.722 7.733 �8.948 9.075
�3.590 7.733 0.581 �0.703 1.003
4.827 �8.948 �0.703 �1.168 3.487

�5.128 9.075 1.003 3.487 �8.381
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considered. In this case, both FORM methods give consistent relia-
bility results with the same computational effort, with an error of
�18.3% with respect to MCS; whereas conventional SORM and the
proposed method improve such estimates, with relative errors of
�5.5% and �5.8%, respectively. Moreover, the proposed method
only requires the same number of LSF evaluations as FORM, which
is 15 (or approx. 30%) less than conventional SORM.
We compared the Hessian matrix obtained with the two SORM
methods (see Table 4). Again, it is found that they are similar to
each other, although larger differences are observed than in Case
1; note, however, that such larger differences have still a very lim-
ited influence on the computed probabilities of failure.

4.3. Stability of a layered soil slope

Next, a 4-layer soil slope example originally proposed by Zolfa-
ghari et al. [40], that was recently analyzed by Zeng et al. [15] to
identify its probabilistic representative slip surfaces (RSSs), is
employed to extend our tests of the methods under discussion.
Fig. 4 shows the geometry of the slope, characterized by an
inclined planar and weak seam, and the unit weights of the soil
layers. Eight strength parameters are considered as random vari-
ables with lognormal distributions, as shown in Table 5. The cohe-
sion, c, and friction angle, u, of each layer are assumed to be
negatively correlated, and the strength parameters of one layer
are assumed to be independent of those of the other layers (i.e.,
qci ;ui

¼ �0:5 and qci ;cj
¼ qui ;uj

¼ qci ;uj
¼ 0 for i; j ¼ 1; . . . ;4 and i–j).

Fig. 4 also shows the 6 ‘best’ RSSs identified by Zeng et al. [15]
for this slope. (Exact coordinates of their nodes can be found in
Table A.3 of [15].) The LSF corresponding to each RSS is given by
GðxÞ ¼ FSðxÞ � 1, where FS is the factor of safety for that specific
slip surface. Spencer’s method, as implemented in SLOPE8R [41]
with minor modifications to improve convergence, is used to com-
pute such FS values. Reliability results computed by the different
methods considered herein for the first 4 LSFs (i.e., those associated
to RSSs 1–4) are listed in Table 6. (RSSs 5 and 6 in [15] are not con-
sidered because they have very small probabilities of failure that
have an almost negligible contribution to the overall probability
of failure; moreover, the number of Monte Carlo simulations
required to achieve accurate probabilities of failure for them are
too large.)

Results show that FORM produces significant errors for LSFs 1–4
(from about 80% to 490%), suggesting that LSFs 1–4 are all highly



Fig. 4. Geometry of layered soil slope and RSSs identified in [15].

Table 5
Statistical parameters of random variables considered for the slope stability example.

Layer Random
variable

Mean
value

Standard
deviation

Distribution
type

1 c1 (kPa) 18 9.0 Lognormal
u1 (�) 16 4.8 Lognormal

2 c2 (kPa) 20 10.0 Lognormal
u2 (�) 14 4.2 Lognormal

3 c3 (kPa) 12 3.6 Lognormal
u3 (�) 10 2.0 Lognormal

4 c4 (kPa) 20 10.0 Lognormal
u4 (�) 18 5.4 Lognormal

Table 6
Computed reliability results for the slope stability example.

LSF 1 (RSS 1)

n = 6 random variables FEa b Pf ð�10�3Þ D (%)b

FORM iHLRF 35c 2.510 6.03 131.0
HLRF–BFGS 35c 2.511 6.02 130.7

SORM Conventional 35c + 21d 2.786 2.67 2.29
This study 35c + 0d 2.772 2.78 6.51

MCS 100,000 2.793 2.61 –

LSF 2 (RSS 2)

n = 4 random variables FEa b Pf ð�10�3Þ D (%)b

FORM iHLRF 25c 2.852 2.17 77.9
HLRF-BFGS 25c 2.848 2.20 80.3

SORM Conventional 25c + 10d 3.041 1.18 �3.3
This study 25c + 0d 3.066 1.09 �10.7

MCS 100,000 3.031 1.22 –

LSF 3 (RSS 3)

n = 8 random variables FEa b Pf ð�10�4Þ D (%)b

FORM iHLRF 107c 3.129 8.76 199.0
HLRF–BFGS 54c 3.131 8.72 197.6

SORM Conventional 107c + 36d 3.387 3.53 20.5
This study 54c + 0d 3.409 3.26 11.3

MCS 1,000,000 3.438 2.93 –

LSF 4 (RSS 4)

n = 8 random variables FEa b Pf ð�10�5Þ D (%)b

FORM iHLRF 55c 3.732 9.49 478.7
HLRF–BFGS 45c 3.728 9.67 489.6

SORM Conventional 55c + 36d 4.109 1.99 21.3
This study 45c + 0d 4.011 3.02 84.1
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non-linear. SORM solutions outperform FORM in this case, provid-
ing probabilities of failure that compare better to MCS results. Note
that the error of the proposed method for LSF 4 is relatively large
(84.1%), although it is still significantly better than the FORM
results (478.7% for the iHLRF algorithm and 489.6% for the HLRF–
BGFS algorithm). Note also that relative errors computed using
reliability indices instead of probabilities of failure would be much
smaller.

Regarding the computational cost, the HLRF–BGFS algorithm
can sometimes significantly reduce the number of function evalu-
ations required by the iHLRF algorithm to compute FORM solu-
tions. Similarly, the proposed SORM method, which always
requires the same number of FEs as the HLRF–BGFS algorithm,
requires significantly fewer FEs than traditional SORM (between
approx. 30% and 60%, for the RSSs considered), and that the compu-
tational savings tend to increase as the number of random vari-
ables involved, n, increases. This suggests that the proposed
method could represent a significant advantage when the LSFs
are computationally expensive or when the number of random
variables are large.
MCS 2,500,000 4.153 1.64 –

a FE = Number of deterministic function evaluations.
b D = Relative error in relation to MCS, computed based on the results of Pf.
c Number of FE required by FORM.
d Number of FE required for computing Hessian matrix.
5. Summary and conclusions

A new method has been proposed in this study for an efficient
estimation of the second order probability of failure of geotechni-
cal problems. To reduce the computational cost, the method builds
on both the HLRF–BGFS and SR1 algorithms; in particular, instead
of using the Hessian matrix computed with a forward difference
scheme that is traditionally employed in SORM, it uses good
approximations to the Hessian matrix provided by the SR1 algo-
rithm, and it incorporates them to the HLRF–BGFS algorithm. (Such
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good approximations to the Hessian matrix are responsible, to a
large extent, of the improved performance observed.) In addition,
as SORM builds on results (design point and gradient information)
provided by FORM, an efficient and robust FORM algorithm is of
interest to successfully implement the second order reliability
analysis, and that is why we use the HLRF–BGFS algorithm—an
algorithm that incorporates information about curvatures of the
LSFs, hence being more robust and efficient than other HLRF algo-
rithms—to compute FORM solutions.

Three example cases of common geotechnical engineering
problems—settlement of a rectangular foundation, bearing capac-
ity of a shallow footing, and stability of a layered soil slope—have
been employed to test the proposed method, and Monte Carlo sim-
ulation results have been employed as the ‘reference’ or ‘exact’
solution.

Results show that, for the cases considered in this study, the
proposed method can often provide probability of failure estimates
which are as good as those of conventional SORM, but with a
reduced computational effort that is indeed equal to that required
by HLRF–BGFS-based FORM. In particular, for most of the cases
studied in this paper, probabilities of failure computed by the pro-
posed method are found to be close to those of conventional
SORM; and the absolute values of their relative errors with respect
to MCS results are normally less than 12%, which is considered
acceptable in engineering practice. (Although the error with
respect to MCS is relatively large (84.1%) for LSF 4 in the layered
soil slope example, the proposed method still improves the FORM
results significantly; and note that relative errors computed using
the reliability indices would be much smaller.) More importantly,
the proposed method requires a reduced computational effort, as
the SR1 algorithm approximates the Hessian matrix with only
kðnþ 1Þ LSF evaluations, a value which, for large n, can be signifi-
cantly smaller than the kðnþ 1Þ þ nadd þ nðnþ 1Þ=2 LSF evaluations
required by conventional SORM. Results also suggest that the
HLRF–BGFS algorithm can often identify the design point with less
computational effort than the iHLRF algorithm, particularly when
complex LSFs are involved. This contributes further to the effi-
ciency of the proposed approach.

Finally, from a practical viewpoint, the reliability results com-
puted by the proposed method can also be used as an indicator
of the non-linearity of the LSF involved. As pointed out by Rackwitz
[42], the first order approximation can be adequate for 90% of all
practical applications; however, when MCS are not available or
cannot be obtained due to their computational cost, it is difficult
to predict when the non-linearity of the LSF corresponds to one
case belonging to the remaining 10%. In this circumstance, the pro-
posed method provides an interesting tool, as the first- and
second-order probabilities of failure can be obtained simultane-
ously and without additional LSF evaluations. Then, both results
can be compared: if they coincide, the LSF can be considered as lin-
ear in practice; otherwise, the LSF would be non-linear (with its
non-linearity increasing with an increasing difference between
both probabilities of failure) and adequate tools to deal with such
non-linearity—such as a SORM method that compute better Hes-
sian matrix, or simulation methods—can be employed.
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Appendix A

An analytical method to compute the vertical bearing resis-
tance, qult, of a shallow footing in a uniform sand deposit subjected
to a vertical load, PV, and also to a horizontal load that produces
moment (with PH being the horizontal load and h being the height
with which it acts in relation to the foundation plane) was summa-
rized by Chan and Low [14] based on the Annex D of Eurocode 7.

Following [14], qult, can be computed as

qult ¼ c0Ncscic þ cDNqsqiq þ 0:5cB0Ncscic ðA:1Þ

where Nq; Nc and Nc are the traditional dimensionless bearing
resistance factors that depend (strongly non-linearly) on the soiĺs
friction angle, as

Nq ¼ ep tanu0
tan2ð45	 þu0=2Þ ðA:2Þ
Nc ¼ ðNq � 1Þ cotu0 ðA:3Þ
Nc ¼ 2ðNq � 1Þ tanu0 ðA:4Þ

and where sq; sc; sc are dimensionless factors that introduce cor-
rections to account for the shape of the footing (B and L are the
width and length of the footing) and the excentricity of the loads.
They can be computed as

sq ¼ 1þ ðB0=L0Þ sinu0 ðA:5Þ
sc ¼ ðsqNq � 1Þ=ðNq � 1Þ ðA:6Þ
sc ¼ 1� 0:3ðB0=L0Þ ðA:7Þ

where B0 ¼ B� 2eB, L
0 ¼ L, and eB ¼ PH � h=PV. Similarly, iq, ic and ic

are dimensionless correction factors to account for the inclination of
the resultant load which can be computed as

iq ¼ 1� PH

PV þ B0L0c0 cotu0

� �m

ðA:8Þ
ic ¼ iq � 1� iq
Nc tanu0 ðA:9Þ
ic ¼ 1� PH

PV þ B0L0c0 cotu0

� �mþ1

ðA:10Þ

where c0 is the cohesion of the soil and m can be written as

m ¼ 2þ B0=L0

1þ B0=L0
ðA:11Þ

Using this approach, the bearing capacity failure would be the-
oretically exceeded when the vertical applied pressure, q, which
can be computed as

q ¼ PV=B
0 ðA:12Þ

becomes greater than the value of qult computed using Eq. (A.1).
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Appendix B

List of symbols and acronyms
Symbol
 Description
General

FORM
 First order reliability method

SORM
 Second order reliability method

BFGS
 Broyden–Fletcher–Goldfarb–Shanno

SR1
 Symmetric rank-one

HLRF
 Hasofer–Lind–Rackwitz–Fiessler

LSF
 Limit state function

RSM
 Response surface method

ANN
 Artificial neural network

X
 A vector of random variables in physical

space

U
 A vector of uncorrelated standard normal

random variables

b
 Reliability index

Pf
 Probability of failure

iHLRF
 Improved Hasofer–Lind–Rackwitz–Fiessler

rg(�)
 Gradient vector

Dh
 Step size

H
 Hessian matrix

u⁄
 Design point

n
 Number of random variables

V
 Random variables in V-space

P
 Orthogonal rotation matrix

a
 Unit design point vector

Hrot
 Rotated diagonal matrix

ji
 Principal curvatures

k
 Number of iterations

dk
 Search direction

B
 Inverse of the Hessian matrix

pk, qk, nk
 Variables used for BFGS updating

e
 Stopping criterion

sk, yk
 Variables used for SR1 updating

T
 (as superscript) transpose operator

g
 A very small positive number

I
 Identity matrix

nadd
 Total number of additional LSF evaluations

needed to compute the merit function and to
select the step size in the iHLRF algorithm
MCS
 Monte Carlo simulation

FEs
 Number of deterministic LSF evaluations
Rectangular foundation example

DH
 Settlement of a flexible rectangular

foundation

(DH)limit
 Limiting settlement

qo
 Contact stress

m
 Poisson’s ratio

Es
 Elastic modulus

B
 Width of footing

L
 Length of footing

D
 Embedment depth

H
 Stratum thickness

m
 Number of corners

I1, I2, IF
 Influence factors
Shallow footing example

qult
 Vertical ultimate bearing resistance

q
 Vertical (equivalent) applied pressure

Nq, Nc, Nc
 Dimensionless factors for the bearing
Appendix B (continued)
Symbol
 Description

resistance

u’
 Friction angle of soil

sq, sc, sc
 Dimensionless shape correction factors

B
 Width of the footing

L
 Length of the footing

PH, PV
 Horizontal load and vertical load

h
 Position of horizontal load

iq, ic, ic
 Dimensionless correction factors to account

for load inclination

c’
 Cohesion of soil

D
 Depth of foundation

c
 Unit weight of soil
Layered soil slope example

c
 Cohesion

u
 Friction angle

q
 Correlation coefficient

RSS
 Representative slip surface

FS
 Factor of safety

c
 Unit weight
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