DOI: 10. 16030/j. cnki. issn. 1000-3665. 2016. 01. 19

三维激光扫描技术在危岩监测中的应用

王梓龙 裴向军 蓮秀军 魏小佳 蒙明辉

(成都理工大学地质灾害防治与地质环境保护国家重点实验室,四川成都 610059)

Application of a terrestrial laser scanner to the study of rockfall monitoring

WANG Zilong ,PEI Xiangjun ,DONG Xiujun ,WEI Xiaojia ,MENG Minghui

(State Key Laboratory of Geohazard Prevention and Geoenvironment Protection , Chengdu University of Technology , ChengDu , Sichuan 610059 , China)

Abstract: High risk dangerous rocks occur widely in alpine gorge region, specifically in seismic disastrous area. The regular deformation monitoring aims at the dangerous rocks which have already deformed or have deformation evidence, and detects the spot displacement. It cannot early warn the risk of unknown rock and cannot catch the rock mass holistic deformation characteristics. With the help of three-dimensional laser scanning technology, the non-contact surveying can quickly get high precision dense slope entity spot cloud data from different period. This paper takes the Shaziba dangerous rock as an example and explains the technical application on dangerous rock. A new idea of detection aiming at slump and rockfall for these two different failure mode is put forward: (1) quantification of the slump scale and thickness by 3D image in combination of the rainfall to get the relationship between the slump deformation and accumulated rainfall, (2) statistical analysis of the rockfall scale and distribution to make prediction to dangerous region. Keywords: three-dimensional laser scanning technology; unstable-rock; monitoring; slump; rockfall

川藏公路沿线山势陡峻,多为高山峡谷地带,峰谷 高差数千米,受亚欧板块强烈的挤压效应,导致该区构 造活跃,地质环境条件复杂^[1~2]。高寒高海拔山区,风 化卸荷作用明显,促使区内岩体破碎,节理裂隙发育, 从而孕育了大量崩塌危岩等地质灾害,对居民生活、生 命财产及公路交通安全造成了极大的危害。尤其是 "5.12"汶川地震和"4.20"庐山地震过程中,强烈的地 震动效应,导致裂隙扩张,岩体松动,产生了大量"松 而未动,摇而未坠"的不稳定岩体,加剧了崩塌等次生 地质灾害的滋生^[3~4]。同时,这类危岩体分布广泛,多 处于难以企及的高陡地段,多为高位危岩体,其失稳往 往具有突发性和随机性的特点。因此,这类危岩体的 监测是目前预警工作的难点。

目前对危岩体有效的工程监测手段主要是利用全

第一作者: 王梓龙(1990 -), 男, 硕士研究生, 主要从事地质灾害防治、监测、预警等研究。 E - mail: wangzhilong_@ 126. com

收稿日期: 2015-04-07; 修订日期: 2015-06-18

基金项目: 国家自然科学基金项目资助(41302240)

站仪、GPS、测缝仪等对单一危岩体进行多点位移或裂 缝监测^[5~6],此类方法局限于特定位置的单点位移监 测,测量值仅代表局部变形情况,无法反映整体变形过 程及地质特征。而大多数高位危岩体,受结构面的影 响 岩体破碎,不仅存在较大规模的滑塌失稳现象,也 存在不定时、随机的碎落掉块现象,这就需要对边坡危 岩的总体规律进行评判和预测。

借助三维激光技术,进行非接触式的全面监测,为 高位危岩体的监测提供了高效、精确的方法和手段。 数亿计的高密度、高精度点云数据克服了传统监测数 据单一的缺点,非接触式测量克服了对高陡危岩无法 企及的障碍,从而实现准确、全面的监测。

本文以丹巴县沙子坝危岩为例,借助三维激光扫 描技术提出危岩体监测新方法,阐述该技术在危岩体 监测中的应用特点及效果,对危岩体失稳规律进行研 究,从而达到监测预警的目的,并探索其应用前景。

1 沙子坝危岩监测

1.1 工程地质条件

沙子坝危岩位于甘孜藏族自治州丹巴县城沙子坝 南侧 坡脚紧邻丹巴县城区(图1)。整个坡体上陡下 缓 崩源区高差 150 余米 ,主要为基岩出露 ,岩性为志 留系茂县群第四组黑云母斜长变粒岩,产状 340°~ 20°∠5°~10°岩体受风化卸荷作用影响多呈张开状, 宽 0.5~2 cm 深 0.5~1 m。构造裂隙、卸荷裂隙密集 发育 卸荷裂隙主要控制岩体后缘分离面 ,产状 255° ∠72° 延伸长5~8 m 宽1~3 cm 深0.5~1 m; 构造 裂隙主要控制侧裂面 产状 32°∠85° 延伸长 2~6 m, 宽1 cm 深 0.5~1 m。整个区域受结构面切割影响, 岩体破碎 产生大量松动岩块 块径 0.3~3 m 稳定性 较差。近年来 曾多次发生崩塌事件 零星掉块和溜滑 也时有发生(图2)。危岩体下部地形有所减缓,以崩 塌堆积体为主 堆积体高约65 m 坡度35°~45° 结构 松散 植被发育 堆积体的存在一定程度上减缓了滚石 的动能作用。

1.2 点云影像特征获取

针对沙子坝危岩特殊地质条件,考虑到精度和仪器有效工作距离因素,本次扫描工作选用奥地利 RIEGLVZ4000型激光扫描仪,其采样速率为22万点/ 秒,采样间距1mm,远距离测量精度<15mm,再加上 多站点耦合矫正,从而保证精度误差处于毫米级。该 区降雨充沛,夏季降雨更为集中,在渗透压力和裂隙水 压力的作用下,块体不稳定性因素增加。因此,本次研

图 1 丹巴沙子坝危岩全貌 Fig. 1 Bird's-eye view of the unstable rock in Shaziba

图 2 溜滑和掉块 Fig. 2 Slump and rockfall

究监测时段选在降雨集中的 7—8 月 ,监测时段内降雨 频率为 3~5 d ,故扫描周期定为 5 d。监测持续 45 d , 共获取了 9 期边坡点云影像数据(图 3)。

图 3 2014 年 6 月 25 日第 1 期扫描影像 S_0 Fig. 3 First scanning image $S_0(2014/6/25)$

为使各期数据能够完美叠加分析,每次扫描在目标范围内均匀布设4个标靶点,结合仪器自身坐标系统,实现坐标系统转换,从而保证每期数据的匹配与统一,为高精度的定量分析提供基础。同时,为了提高数据精度,每次扫描仪器均架设在同一固定位置。

2 监测理论及精度

2.1 理论模型

常规监测数据反映的是岩体某一点的测量值大小, 测量值按照指定方向对长度求差即为变形值。三维激 光扫描获取的是高密度点云影像数据,每个点都具有相应的空间形态特征,无法直接进行点坐标求差。变形值的求解是所有点云数据在同一坐标系统,然后对各期点云数据进行面域的整体比较^[7]。其方法是:将不同期扫描数据根据标靶点转换成相同坐标系统,使各期点云具有相同绝对坐标值。倘若边坡实体未产生变形,那么扫描的2期点云数据坐标一致,三维影像会完全重合;倘若边坡实体产生了一定的变形,那么扫描的2期扫描点云数据坐标不一致,三维影像则发生分离(图4)。此时发生分离的2层面状数据的空间差异即为变形,面域点云的绝对坐标差值即为变形量。

图 4 影像对比结果 Fig. 4 Result of images comparison

变形量的计算遵循 "最短距离原则"^[8],定义为: 以第一期扫描数据基准面域数据为 S_0 ,之后每期数据 为 S_1 , S_2 , S_3 ,…, S_i ,每期数据中的每个点坐标记作 S_iP_i 取面域数据 S_0 的每一个点到 S_i 的法向距离作为 该点的变形值,记作 dif_i :

 dif_i = distance $[S_iP_i]$ -distance $[S_0P_i]$

dif_i值的集合就是面域数据比较的差值,其结果 反映了区域变形大小及规模 dif 值为正表示正位移式 变形,监测区域危岩可能向坡内出现倾覆、松动等; dif 值为负表示负位移式变形,监测区域危岩发生了一定 规模的滑塌、掉块等。

2.2 误差分析

三维激光扫描仪属于高精密仪器,对作业环境和 数据处理要求较高,因此存在一定的误差,这些误差最 终导致理论变形值与实际变形值发生偏差,反映到监 测结果上就是理论上未发生变形的区域,dif值却不为 0,发生了变形的区域变形值存在 $0 \sim \pm dif$ 值的随机误 差,该随机误差定义为监测精度 $\gamma^{[9-10]}$ 。因此,监测前 必须获取 γ 值来对监测结果进行精度评定。通过选定 一块表面平整岩体,选取标准面积区域(1 m × 1 m)进 行了 2 次扫描(默认危岩未变形, dif_i=0),将两次扫描 的点云进行叠减计算,得到了15000个 dif 值,从而根据 dif 值绘制误差分布曲线(图5) 其结果反映:

(1) 所有的 *dif* 值均为正,说明误差只在一个方向 上,不存在正负误差波动的情况。

(2)误差值总体上呈高斯分布,主要集中在1~4 mm之间,连续最大误差7.6 mm,平均误差2.5 mm。 考虑到沙子坝危掉落块体直径普遍大于5 cm,且变形 量值不小于1 cm,故监测精度γ完全能满足常规危岩 体监测的精度要求。

Fig. 5 Error distribution curve

3 监测结果分析

9 期边坡实体的扫描点云影像数据经过坐标转换 校正后,以第一期扫描数据 S₀ 作为基准,依次将其余 各期数据与第一期数据进行叠加计算,得到各期数据 累计差异变化值。根据 dif 值的范围,首先将变形值进 行分级,每一级赋予不同颜色,就可以得到监测区域的 变形值云图,然后由颜色的差异来初步判断各区域变 形情况,分析其破坏模式,并对变形失稳类型进行划 分,再对每种类型进行单独研究。根据9期监测数据 计算云图并结合现场勘查,判断监测期间内主要存在 两种变形失稳类型:块碎石土溜滑、碎落掉块。

图 6 为 *S*₀、*S*₂2 期数据变形计算云图 ,根据变形值 颜色尺度带 ,就能初步判定危岩区变形类型。其中 1~4#位置变形属于覆盖层局部溜滑现象 影像特征表 现为局部变形量较大 ,颜色差异明显; 5~6#位置变形 属于碎落掉块现象 影像特征表现为变形量均匀 ,无色 彩畸变。7~8#位置影像显示是正变形和负变形错落 交替分布 ,这是由于该区域存在植被 ,每次扫描时间不 同 植被生长变化差异影响导致计算结果出现不稳定

图 6 变形计算云图 Fig. 6 Cloud images of S₀ & S₂ deformation calculation

3.1 局部溜滑

1~4#位置的覆盖层溜滑主要发生在降雨过程中 或降雨结束后短时间内,其原因是降雨入渗,浸泡软化 块碎石土,降低其抗剪特性,再加上渗压力和浮托力的 影响,从而导致其失稳破坏。这类变形单次变形值较 大,属于面状形变,水是主控因素。对于这类变形的解 译,首先是根据变形区域色彩差异,圈定变形区域边 界,量取变形区域的尺寸,对其变形范围进行量化。并 且,在点云数据中通过提取剖面线还原变形区域变形 前后准确地形,从而对比分析得到溜滑部位的厚度变 化、坡度变化、垮塌方向等特征信息,同时对崩滑体积 进行准确量测,再结合该时段内雨量数据,分析得到冲 刷速率(规模)与雨量关系之间的关系。

通过图 6 锁定 2#变形区,提取该位置两期点云数 据叠加影像的典型剖面线(图 7)。剖面线的获取不是 通过提取等高线或传统勘察中对地形的实测,而是在 点云数据上直接截取。只要在叠加影像上按照指定方 向截取剖面线,就能得到2条1:1还原实际地貌的高 精度地形线。图7反映2#溜滑体总体呈"漏斗"状,发 育高程2035~2022 m,宽13.2 m,长14.9 m,厚0.2 ~1.1 m,体积100.3 m³,原始地形坡度57°,失稳后地 形坡度60°。当单次溜滑规模较大时,根据失稳方向 和三维模型就能确定溜滑块体滑落的最大可能滑塌路 径。1~4#溜滑体解译特征见表1。

	Table 1 Interpretation characteristics of slumps							
编号	长/m	宽/m	厚度/m	体积/m ³	变化坡度/(°)	失稳方向/(°)	弹跳高度/m	冲击力/kJ
1	18.5	5.5	0.3~1.6	150	45/52	332	< 0. 1	522.89
2	14.9	13.2	0.2~1	100	57/60	13	< 0. 1	239.15
4	11.4	2.3	0.2~0.8	10	42/44	22	< 0. 1	39.12

表1 溜滑体解译特征

注:3#区域未产生变形 属于2#溜滑区滑塌物质部分堆积在3#位置凹陷处 影像上表现为变形。

2#溜滑区单次监测周期内降水量与平均溜滑深度 关系如图 8 所示。在监测期间内,仅在第三次监测周 期内出现过一次大变形,溜滑深度达到 9 cm,其余批 次监测数据约为 1 ~ 2 cm。这次大规模的溜滑现象 前,出现了持续 22 d 的降雨,累计降水量达 271.6 mm,是历史同期该月降水量的 2.1 倍,说明溜滑破坏 规模与前期降水量密切相关,表现出一定的滞后性,从 而充分说明了前期累计降水量的重要性。块碎石土渗 透性良好,长时间的降雨入渗,土体逐渐饱水,在渗透 力和软化效应作用下,改变了土体的稳定性现状。因 此,即使后期出现较小强度的降雨情况,也易造成较大 规模的失稳破坏。7月5日之前3个周期日降雨为 9.8 mm/d,之后9个周期日降水量为3.1 mm/d,仅为 前期1/3,该规模下主要表现为表层土体冲刷流失,说 明无降雨或降雨很小时块碎石土的溜滑主要受自身结 构控制。

因此,持续强降雨是诱发大规模溜滑失稳的直接 因素。监测期内其累计降水量和日降水量可以作为该 地区溜滑预警雨量的参考值,但由于只有一次雨季监 测数据,该值存在一定误差,尤其是失稳前的持续降雨

时间关系到土体的软化程度。因此 ,需要多个雨季监 测数据来修正临界降水量及确定持续降雨时间。

3.2 碎落掉块

• 128 •

针对沙子坝这类破碎危岩,借助三维激光扫描还 原真实三维影像,能够全面掌握整个区域内各危岩单 体的变形情况,准确捕捉变形位置和变形规模,依靠影 像直接判断是否发生碎落掉块。通过统计危岩区块体 掉落的频率数据、体积数据、区域密度数据、高程分布 数据等 综合评判危岩区碎落掉块规律,从而对其发展 趋势进行预测。

对于这类监测解译,首先根据整个区域的监测云 图确定异常变形区域 如图 6 的 6 # 位置所示颜色无畸 变区域 这个区域特点是颜色异常于周围 但是无明显 突出明亮斑点 反映的是小范围异常。这是因为整个 区域的监测云图反应的是整个区域的变形差异,其变 形值范围是整个区域最大变形值和最小变形值构成的 区间 那么在整张区域云图上,对面积较小、变形量较 小的危岩就无法根据颜色准确识别。因此需要将变形 部分(6#位置)的点云数据提取出来进行单独计算分 析 缩小变形量分级范围(最大最小值仅是6#区域 内)从而更精细显示 6#位置的变形云图(图 9)。根 据前文阐述该地区节理裂隙发育规律,不稳定的岩块 直径普遍大于 5 cm 因此判别依据是变形云图上颜色 异常的区域直径范围大于 5 cm ,而小于 5 cm 的区域 则直接忽略 因为该级别大小的岩块即便脱落 影响较 小。图9反映了6#区域上6次岩块的掉落现象。

根据以上方法逐步分析各个异常区域,即可得到整 个危岩区的块体掉落数据(表2)。其中块体直径表示 掉落岩体的体积大小,一定程度上反映了该区域岩体的 破碎程度。监测周期内掉块岩石直径普遍小于20 cm, 少数岩石直径大于20 cm,说明该区域内岩体整体失稳

几率小 都是零星碎落掉块,掉落块体直径受结构面发 育程度控制。结合解译块体特征和三维地形数据,依据 《公路路基设计规范》^[11]就能估算不同块径岩体掉落的 最大冲击动能及最优滚动路径,其结果为布设防护措施 提供了可信依据。图2是被动防护网成功拦挡30 cm 以下块径岩体案例,现有级别防护措施足够拦截直径小 于30 cm 的岩块,而块径在30 cm 以上的岩体危险性较 大,一般的被动性措施无法拦挡。图 10 是每个周期内 降水量与块体掉落频率关系图,前3 个监测周期内降水 量是后6个周期降水量的2~3倍,掉块数略有增加,可 能是因为降雨期雨水渗透作用使裂隙水压增加,同时软 化了部分软弱接触面,导致岩体稳定性降低,但这种关 系不明显,降雨只能是诱发因素之一。

表 2 块体掉落统计特征

	Table 2Characteristics of blocks									
日期	块径	高程	日期/	块径	高程					
/月 – 日	/cm	/ m	月 – 日	/cm	/ m					
06 - 20	00	-	07 05	18	1 967.6					
	8	1 896. 9	07 - 03	56	1 907.3					
	6	1 929.3		11	1 916.3					
06 25	11	2 017.5	07 – 10	7	1 939.5					
06 - 25	5	2 005.4		5	1 938.9					
	9	1 981.3	07 15	8	1 897.5					
	13	1 941.7	07 - 15	6	1 902.4					
	7	1 919.6	07 - 20	0	—					
06 20	12	1 954.6	07 25	4	1 931.9					
00 - 30	7	2 000. 1	07 - 25	6	2 000.0					
	8	1 964.4		7	1 944.5					
	11	1 906.9	07 - 30	9	1 917.4					
	21	1 919.3		8	1 955.1					
07 05	9	1 980. 9		9	1 927.8					
07 - 03	7	1 942.5	08 - 05	6	1 949.8					
	15	1 961.1		7	1 923.1					
	33	1 967.6			_					

图 10 掉块频率与降水关系图

为了得到整个区域危岩掉落的分布数据 將整个监 测区域的掉落岩块都以"点"的形式 ,按1:1的比例尺在 水平视线方向上 ,把全部危岩块体投影到平面上 ,就可 以得到危岩区掉块分布图(图11)。从图中可以发现碎 落掉块存在高程集中的现象 ,海拔1915~1965 m 之 间 掉块数占了总数的70%。结合现场调查 ,发现该海 拔段危岩普遍较陡 ,坡度达到70°以上 ,局部位置近垂 直 ,而上方危岩相对较缓 ,说明危岩掉落与坡度密切相 关。掉块的空间分布规律则表明块体掉落存在密度差 异 图中 A、B 两个区域范围内掉块相对集中 ,说明这两 个区域内结构面贯通性较好 ,坡体结构更破碎 ,岩体稳 定性更差 ,应作为重点监测和防范对象。

监测结果表明,监测期间内共计掉落31块岩体, 平均每两天就掉落一块,平均直径12 cm,大部分块体 滚动休止于下方堆积区,少数被防护网拦挡,并未出现 较大块体的崩塌,整个区域危岩属于稳定状态。只有 A、B两个区域内岩体掉落较集中,存在坡表岩体整体 剥落的可能,但需要进一步监测。

图 11 块体展布立面图

Fig. 11 Distribution elevation of blocks

4 结论

(1) 三维激光扫描技术能够突破传统危岩单点调

查和监测的手段, 克服了技术上获取危岩变形特征信息 不准确、不全面的局限, 避免了高陡危岩调查的危险性。

(2)通过海量点云数据准确解译出危岩体变形特征不仅能够反映局部区域危岩的变化,而且能够对大变形危岩区域进行精确分析,还原其变化过程,获取地貌的微变化、滑塌体空间特征等信息,准确度更高。其中对掉块监测是提出了直接从影像上捕捉失岩体的方法,从统计学角度进行分析,突破了传统"变形值"的概念,具有一定创新性。

(3) 溜滑变形与降雨密切相关,累计降水量直接影响变形规模;掉块则主要受岩体结构控制,与降雨关系不明显表现出高程集中和区域集中的现象,根据监测结果能够划分出危岩区危险等级,具有一定预警作用。

(4)无论是局部溜滑还是碎落掉块,其监测结果均可为计算滚石的弹跳高度、冲击力大小提供依据,直接为危岩治理防护提供准确的数据,包括危岩安全等级、被动网支护级别、最优防护位置等,具有重大的工程意义。

参考文献:

- [1] 黄润秋. 岩石高边坡发育的动力过程及其稳定性控制[J]. 岩石力学与工程学报,2008 27(8): 1526 1527. [HUANG R Q. Geodynamical process and stability concept of high rock slope development [J]. Chinese Journal of Rock Mechanics and Engineering, 2008 27(8): 1526 1527. (in Chinese)]
- [2] 钱海涛,张力方,修立伟,等.中国地震地质灾害的主要类型和分布特征[J].水文地质工程地质,2014 *A*1(1):122-123. [QIAN H T, ZHANG L F,XIU L W, *et al.* Types and distribution characteristics of earthquake induced geological disasters in China
 [J]. Hydrogeology & Engineering Geology,2014 *A*1(1):122-123. (in Chinese)]
- [3] 黄润秋. 汶川 8.0 级地震触发崩滑灾害机制及其 地质力学模式[J]. 岩石力学与工程学报 2009 28
 (6): 1240 - 1241. [HUANG R Q. Mechanism and Geotechnical models of landslide hazards triggered by Wenchuan 8.0 earthquake [J]. Chinese Journal of Rock Mechanics and Engineering, 2009,28(6): 1240 - 1241. (in Chinese)]
- [4] 肖进,李辉. 汶川地震灾区地质环境演化过程与后 重建防治措施[J]. 工程地质学报,2012,20(4): 533 - 537. [XIAO J, LI H. Geology environment evolution process of Wenchuan earthquake epicenter and disaster prevention and control measures for post reconstruction [J]. Journal of Engineering Geology, 2012, 20(4): 533 - 537. (in Chinese)]

(下转第142页)

- Xu T ,Pruess K. Modeling multiphase non-isothermal [11] fluid flow and reactive geochemical transport in variably saturated fractured rocks [J]. American Journal of science 2001(301): 6-33.
- Pruess K , Oldenburg C M , Moridis G J. TOUGH2 [12] User's Guide Version 2 [M]. Bay Area: Lawrence Berkeley National Laboratory, 1999.
- [13] Pruess K Garc' a J Xu T et al. Codeinter comparison builds confidence in numerical simulation models for geologic disposal of CO₂ [J]. Energy ,2004 ,29(9): 1431 - 1444.
- [14] Xu T Apps J A Pruess K et al. Numerical modeling of injection and mineral trapping of CO₂ with H₂S and SO2 in a sandstone formation [J]. Chemical Geology, 2007 242(3/4): 319-346.
- [15] Van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils [J]. Soil science society of America journal, 1980,44(5): 892-898.
- [16] 武文慧. 鄂尔多斯盆地上古生界储层砂岩特征及 成岩作用研究 [D]. 成都: 成都理工大学,2011. [WU W H. Reaserch on the Characteristics and

(上接第129页)

- [5] 杨秀元,孙强,晏鄂川,等.基于实测的望霞 W1 危岩体失稳动态过程分析 [J]. 水文地质工程地 质 2014 A1(1): 96 - 99. 「YANG X Y, SUN O, YAN E C , et al. A study of the failure process of the Wangxia dangerous rock mass W1 based on sitemonitoring [J]. Hydrogeology & Engineering Geology, 2014 41(1): 96-99. (in Chinese)]
- [6] 高伊航,刘之葵,唐克静,等.重庆瀼渡场北崩滑 体变形特征及成因分析[J].水文地质工程地质, 2014 A1(2): 149 - 151. [GAO Y H, LIU Z K, TANG K, et al. Deformation characteristics and forming factors of the Chongqing Northern Rangduchang landslide [J]. Hydrogeology & Engineering Geology ,2014 ,41 (2): 149 - 151. (in Chinese)]
- Nguyen H T, Fernandez Steeger T M, Wiatr T, et al. [7] Use of terrestrial laser scanning for engineering geological applications on volcanic rock slopes-an example from Madeira island (Portugal) [J]. Natural Hazards and Earth System Sciences 2011 11: 810-817.

Diagenesis of Stone in the Upper Paleozoic Reservior in Ordos Basin [D]. Chendu: Chengdu University of Technology 2011. (in Chinese)]

- Gennaro V, Frank R. Elasto-plastic analysis of the [17] interface behavior between granular media and structure [J]. Computers and Geotechnics ,2002 ,29: 547 - 572.
- [18] 李德栋. 气水盐矿体系相平衡耦合化学平衡及其在 二氧化碳地质储存数值模拟中的应用[D].北京: 中国科学院,2008. [LIDD. Gas-water-salt-rock System Phase Equilibrium Coupling with Chemical Reaction Equilibrium and its Application in CO₂ Geological Storage Numberical Simulation [D]. Beijing: Chinese Academy of Sciences ,2008. (in Chinese)]
- [19] 那金. CO, -EGS 水-岩--气作用对地层孔渗特征的影 响[D]. 长春: 吉林大学 2013. [NA J. The impact of water-rock-gas interaction on the formation porosity and permeability in CO2 - EGS [D]. Changchun: Jilin University 2013. (in Chinese)]

责任编辑: 汪美华

- [8] Abellan A, Jaboyedoff M, Oppikofer T, et al. Detection of mill metric deformation using a terrestrial laser scanner experiment and application to a rock fall event [J]. Natural Hazards and Earth System Sciences , 2009 9: 365 - 370.
- [9] AntonioAbell, Thierry, Michel Jaboye, et al. Terrestrial laser scanning of rock slope in stabilities [J]. Earth Surface Progress and Landforms, 2014 (39):87-92.
- [10] Arosio D , Longoni L , Papini M , et al. Towards rock fall forecasting through observing deformations and listening to micro seismic emissions [J]. Natural Hazards and Earth System Sciences 2009 9: 1125 - 1128.
- 中华人民共和国交通部. JTGD30-2004 公路路基 [11] 设计规范[S]. 北京: 人民交通出版社,2014. [Ministry of Communications of PRC. JTGD30-2004 Code for Design of Highway Subgrades [S]. Beijing: China Communications Press 2014. (in Chinese)] 责任编辑: 汪美华