Research Papers:

1. Application of Flocculant in Whole Tailings Cement Filling of an Iron Mine
 Shiqing Nan, Qinli Zhang, Xianzhang Guo
 1-8

2. Research on the Maximum Anti-seismic Capability of High Earth Rock-fill Dam under Strong Earthquake
 Gui Yang, Kunlin Liu, Yanchen Liu
 9-15

3. The legal mechanism of Yangtze river’s water resources ecological compensation
 Lingzhou Jiang
 16-23

4. Development Characteristics and Causes of Seismic Loess Landslides in North-west China
 Shang H., Ni W. K., Niu F. J., Ma W.
 24-38

5. New Safe Evaluate Analysis Method of Pier Foundation
 Chong Jiang, Keping Zhou, Jinchou Zhao
 39-48

 Jianjun Liu, Rui Song, Jinzhou Zhao
 49-58

7. Analysis of Catastrophe Evolution Characteristics of the Stratified Rock Roof in Shallow Mined-out Areas
 Shuren Wang, Hu Wang, Baowen Hu
 59-64

8. Research and Development of Cemented Filling Materials Based on Blast Furnace Water Quenching Slag
 Shiqing Nan, Qian Gao, Xianzhang Guo
 65-74

9. The High Bench Cast Blasting Effects of BP Neural Network Prediction Model Research
 Xianglong Li, Lihua He
 75-82

10. Experiment Research on Shear Characteristics of Sandstone Considering Cyclic Drying-Wetting Effect
 Kegang Li, Dongwu Zheng, Weihui Huang
 83-87

11. Experimental Study on Mechanical Characteristics of Bulky Rock Material
 Wei Liang, Keping Hou, Kegang Li, Jun Du
 88-93

12. Numerical Analysis on Seismic Response of Shiziping Earth-rockfill Dam
 Xuanming Ding, Gangqiang Kong, Hanlong Liu, Weilong Zuo
 94-101

13. Analysis of delaminations occurring during different rupture tests of X70 pipeline steels
 Jian Hou, Zheng Yang
 102-106

14. A summary on control technologies for disasters of surrounding coal of borehole in coalbed methane reservoir
 Xiangyu Fan, Qiangui Zhang, Wensong Wang
 107-113

15. Research on planning evaluation index system of residential areas in mountainous city for geological disaster prevention-A case
 Yuhui Xu, Tao Tang, Guochun Sun
 114-121

16. Analysis of Microseismic Characteristic and Rockburst Risk during TBM Excavation under Deeply Burried Tunnel
 Bingrui Chen, Guangliang Feng, Qiongpeng Li, Xiating Feng, Zhourong Zhao
 122-128

17. A Pore Scale Modelling of Fluid Flow in Porous medium Based on Navier-Stokes Equation
 Jianjun Liu, Lijun Lin, Rui Song, Jinchou Zhao
 129-136

18. Research on Transient Switching Pressure Behaviours and Control of Hydraulic Cutting in Coal Seams
 Bo Yuan, Yong Kang, Yi Hu, Deng Li
 137-144

19. The Leaching Behavior of Copper from Chalcopyrite Tailings in the Presence of Silver Ion in Bioleaching System
 Limei Tai, Chunfu Xu
 145-150
20. Comparative Study on Landslide Disaster Treatment Effect by Using XCC Pile and Traditional Circular Pile
 Gangqiang Kong, Hang Zhou, Xuanming Ding, Qiong Yang

21. Traffic Assignment Model Considering the Emissions Pricing in a Multi-modal Transportation Network
 Meng Meng, Chunfu Shao, Jie Zhang, Yixuan Sun, Chengxiang Zhuge

22. Experimental study on the mechanical characteristics of coal around airtight borehole wall in coalbed methane reservoir
 Xiangyu Fan, Qiangui Zhang, Wensong Wang, Minghui Li

23. Research on the Released Range of Upper Protective Coal Seam with Short Distance
 Tao Deng, Dengpan Qiao, Jiaxin Tang

24. Unsafe behaviors characteristics and prevention in Chinese coal mine sporadic accidents—the case study about an important state-owned coal mine enterprise
 Hong Chen, Qun Feng, Hui Qi

25. Numerical Simulation of Initial Opening of Longitudinal Joints with Shear Keys and Effects on Seismic Resistance of a Gravity Dam
 Hanyun Zhang, Liaojun Zhang, Yongxing Ji

26. Effects of climate variability and land-use change on stormwater runoff in Xi’an, China for the past 57 years
 Quan Quan, Wan Luo, Bing Sheng, Zhonghua Jia

27. A New Fuzzy Optimization Model for Multicriteria Decision Making (MCDM) Problems
 Guohua Fang, Fei Yang, Yongxing Ji, Donghui Li, Jinchao Xu, Xinyi Si, Wei Guo

28. Numerical simulations on relationships between gas velocity and overpressure of gas explosions in ducts
 Chuanjie Zhu, Baiquan Lin, Yidu Hong, Qian Liu, Yumin Sun

29. Corrosion investigation of groundwater for underground tunnel
 Guoqing Chen, Yuchuan Shi, Feng Ji, Tianbin Li, Jiaxing Wang, Zengliang Wang

30. Objective Self-Determined Intelligent Optimization Algorithm of Landslide Treatment Schemes Selection
 Zhitao Wang, Wei Wang, Xiaodong Guo

31. Study on the strengthening methods on the copper leaching rate with orthogonal experiment of non-interaction
 Xuecheng Zheng, Dongwei Li, Ziqiang Zhao, Tao Huang

32. Study on Viscoelastic Numerical Manifold Method for Simulating the Creep of Rock Mass
 Deming Jiang, Yongcui Wang, Toshio Oshida, Yongming Luo, Hongmei Wang, Quanlai Zhou

33. Crack propagation rule of compound type in surrounding rock of circular hydraulic tunnel in hydraulic fracturing process
 Chaoxuan He, Huiyou Peng

34. Measure model of mining system synergetic degree for gently inclined medium-thick ore body
 Xiangyu Fan, Qiangui Zhang, Wensong Wang, Minghui Li

35. Research on Creep Model and Delay Instability of Coal-Rock Containing Gas
 Chuanjie Zhu, Baiquan Lin, Bingyou Jiang, Qian Liu, Yidu Hong, Yumin Sun

36. Analysis of Geological Defects Detection based on Ground Penetrating Radar
 Guohua Fang, Fei Yang, Yongxing Ji, Donghui Li, Jinchao Xu, Xinyi Si, Wei Guo

37. Study on the Coupling Characteristics of Coal Matrix, Fracture and CBM under Vibration
 Chaoxuan He, Huiyou Peng

38. Impacts of Chelants on Transport of Pb in Soils and Vegetation System
 Xiaoshuang Li, Yaoli Li, Menglai Wang, Jianyong Wang

39. Analytical Solutions for the Seepage Induced Fracture Failure Propagation in Rock Mass
 Taoying Liu, Ping Cao, Hang Lin

40. Review of research on soil seed banks in desert regions
 Deming Jiang, Yongcui Wang, Toshio Oshida, Yongming Luo, Hongmei Wang, Qianlai Zhou

41. Stability analysis of unlined rock oil storage caverns based on uniform design and mathematical statistic
 Chaoxuan He, Huiyou Peng

42. Similar material experimental study on the “domino effect” of the stope pillar unstable failure of gently inclined and medium thick phosphate rock under pillar and room caving
 Xiaoshuang Li, Yaoli Li, Menglai Wang, Jianyong Wang

43. Analysis and treatment of the fault activation below the dynamic foundation in the goaf area
 Lei Song, Zhendong Cui, Houquan Zhang, Lishang Han

44. Research on Stability and Seismic Response of Earth-rock Aggregate Slope under Earthquake Action
 Baosian Liu, Dongliang Zhang, Wenfeng Huang, Junjie Li, Huan Liu

45. A function approximating model for rock based on the least square support vector machines
 Bingrui Chen, Xiaojun Zhao, Hongbo Zhao, Dongfang Chen

46. Studying Tensile Forces of Geogrid Reinforcement in Reinforced Soil Bridge Approach
 Qiang Ma, Junjie Zheng, Jun Zhang
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>48.</td>
<td>Similar material experimental study on the “domino effect” of the stope pillar unstable failure of gently inclined and medium thick phosphate rock under pillar and room caving</td>
<td>Xiaoshuang Li, Yaoji Li, Mengkai Wang, Jianyong Wang</td>
<td>363-369</td>
</tr>
<tr>
<td>50.</td>
<td>The Design and Experiment of Backfill Filter for Groundwater Monitoring Well</td>
<td>Yao-Ming Hong, Hsieh Yun-Chih, Hsueh-Chun Lin, Wen-Pei Sung, Yao-Chiang Kan</td>
<td>381-391</td>
</tr>
<tr>
<td>51.</td>
<td>Research on Pile Quality Assessment and Integrity Simulation Based on Three-Dimensional Strata Model</td>
<td>Zhenping Liu, Jian Liu, Huajian He</td>
<td>392-397</td>
</tr>
<tr>
<td>52.</td>
<td>Study on MATLAB-based Data Processing Method for Ground Penetrating Radar to Detect Tunnel Lining</td>
<td>Zhile Shu, Baoxian Liu, bing Li, kun Zhang, Wentao Sun</td>
<td>398-405</td>
</tr>
<tr>
<td>53.</td>
<td>Failure mechanism recognition and optimum support design of roadway groups in soft and fractured surrounding rock – case study: Paner coal mine</td>
<td>Xingli Lu, Quansheng Liu, Peifang Su</td>
<td>406-414</td>
</tr>
<tr>
<td>54.</td>
<td>A classification matching and conflict resolution method on meteorological disaster monitoring information</td>
<td>Qianmu Li, Jun Hou, Yong Qi</td>
<td>415-421</td>
</tr>
<tr>
<td>55.</td>
<td>Deformation Warning and Dynamic Control of Dangerous Disaster for Large Underground Caverns</td>
<td>Chen G. Q., Li T. B., Gao M. B., Chen Z. Q., Xiang T. B.</td>
<td>422-430</td>
</tr>
<tr>
<td>56.</td>
<td>Slotting Radius Prediction Model of Soft Coal Seams with High-pressure Pulse Water Jet</td>
<td>Zhenlong Fang, Yong Kang, Bo Yuan, Xiaofeng Yang, Xioochuan Wang</td>
<td>431-437</td>
</tr>
<tr>
<td>57.</td>
<td>Comparative Analysis on Landslide Disaster Treated by Using PCC Pile and Drilled Shaft under Lateral Load</td>
<td>Gangqiang Kong, Xuanming Ding, Qing Yang, Zongwei Deng</td>
<td>438-443</td>
</tr>
<tr>
<td>59.</td>
<td>Application of Constant Rate of Velocity Change Method to Improve Dust Cleaning Performance</td>
<td>Xiaochuan Wang, Xuelong Yang, Xinping Long, Dongping Zhou</td>
<td>459-468</td>
</tr>
<tr>
<td>60.</td>
<td>Study on Victims’ Post-disaster Psychological Spaces Tearing in Different Stages and Anti-tearing Planning</td>
<td>-- From Wenchuan Earthquake Case</td>
<td>469-486</td>
</tr>
<tr>
<td>62.</td>
<td>Research on the changes of local Weather and Climate in the Three Gorges Reservoir</td>
<td>An Qiang, Sha Wang, Ningqiu Huang, Tianyu Long, Bin Zhao</td>
<td>498-504</td>
</tr>
</tbody>
</table>
Corrosion investigation of groundwater for underground tunnel

Guoqing Chen, Yuchuan Shi *, Feng Ji, Tianbin Li, Jiaxing Wang, Zengliang Wang
State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, CHENGDU, Post 610059, P.R.C.
* syczxq@sina.com

Abstract

Underground tunnel becomes the common engineering for human activities in recent years. The groundwater corrosion cause significant casualties and economic loss for the tunnel. Hydrology investigation, chemical analysis, and water resistance analysis were carried out to study the corrosion effect of an hydropower tunnel in West China in this paper. First, the groundwater in the study area mainly consists of the bedrock fissure water, fault fissure water and the pore water. Then ten group representative samples of spring point were took to make chemical analysis separately. The SO4 of two points near the big fault are more than 250 mg/l. Results show that it have weak corrosive action to the ordinary cement, the proposal measures should be considered for the tunnel design. The corrosion effect of the groundwater is clarified clearly by the tests. At last, some controlling measures and suggestions for tunnel design were present.

Keywords: Regional environment, Groundwater corrosion, Chemical test, Underground tunnel

Introduction

With the development of economy and the increase of population in China, many districts began to build subway, tunnel and other underground engineering. A series of underground tunnels cause significant casualties and economic loss due to the fragile environment and groundwater corrosion. Large underground engineering must implement regional environmental assessment before the construction begins. Groundwater has a great influence on underground engineering, especially the corrosive action of the groundwater on the tunnel. Groundwater will seriously affect the service life of concrete tunnel. Therefore, it has important significance to evaluate its corrosion to the concrete.

In recent years, there is a lot of corrosion for underground engineering. Degradations regarding the corrosion of Bucharest metro structures of concrete steel are studied by corrosion of steel rebars of reinforced concrete structures 1. Pipeline corrosion will influence on the tunnel Management because of the corrosion on the pipeline 2-4. The corrosion of ferrous metals poses a serious threat on underground engineering, such as the rock bolts 5-8, high pH for crack growth 9-10, and so on.

Groundwater plays an important role on the regional environment 11-14. In addition, it has an effect on the tunnel corrosions. Effect of wash water and underground water will corrode the properties of concrete 15-16. Groundwater and its make-up water are important triggering factors to failure because of the corrosion for concrete 17-18.

The above researches take good explanation about the impact of corrosion on underground tunnel, but the methods are mainly based on the phenomenon explain. The related regional environmental test of groundwater corrosion for tunnel is still less. In order to better study the effect of groundwater corrosion on the tunnel, the physical and chemical properties of groundwater in a tunnel region were studied. The regional environmental analysis and water resistance test of groundwater were carried out independently. The tests show that the water has corrosion for the concrete tunnel. The result provides a basis for design of the underground tunnel.

Regional environmental analysis

The Danba Hydropower Station is located on the main stream of the Dadu River which flows through the Ganzi Tibetan Autonomous Prefecture, Sichuan Danba County. The main buildings of the hydropower station
include sluice, water diversion system, power house and switch station, etc. The average total length of water diversion system is about 17.4km, and two of the diversion tunnel lengths are respectively about 16.5km and 16.7km. The full length of the diversion system uses reinforced concrete lining, and lining after the cross section is a circular diameter of 12.4m. Dadu River is the main stream of the project area water system. The rainfall of valley region is about 606.8mm, so surface water resources are more abundant. And groundwater mainly contains three types which are bedrock fissure water, fault fissure water and loose layer of pore water. Therefore, it is very important to research the corrosive action of water to diversion tunnel concrete. We have researched the hydrogeological conditions and the water chemistry characteristics in this region.

Hydrogeological condition

A. Bedrock fissure water

The region is located in Erosional structures which are characterized as high mountains, steep terrain, strong cutting mountain genus. Left bank of the Quaternary cover is thin, poor infiltration of precipitation conditions, groundwater runoff conditions, and multi valley excretion, agenesis of pore water, groundwater poor storage conditions. Groundwater becomes mainly the bedrock fissure water. The main source of the groundwater recharge comes from atmospheric precipitation and snow melt water, the size of water is affected by seasonal effects. Main excretion form of the groundwater is springs, such as the east side of fractured spring and the fissure spring.

B. Fault fissure water

This area is of fault development, mainly containing F1, F5, F6, F7 shear fault, visible fractured zones contained by the tectonic breccia, mylonite, etc. Crushed zone is intruded by pegmatite and felsic dykes, and rock mass is broken. So, it has certain ability of groundwater storage and migration. But a lot of ground water gushed out is in no sight, only the strands form water flowing out is seen in the fault F6 place.

C. Loose layer pore water

The main outcrop is on the right bank and the river bed coverage. The right bank of the Quaternary overburden widely distributes colluvium and residual sediment. Loose structure and strong water permeability provide good conditions for groundwater storage and transportation of water. The supply is mainly rain and snow melt water during the rainy season. Pore water seeps in rain season, groundwater level and flow change with the seasons, excrete into the valley. The body of accumulation landslide and so on can see pore springs outcrop (Fig. 1). Rich water of river is in bed cover, so the ascending spring outcrops (Fig. 2) in the floodplain of the Dadu River when water level continues to drop.

Chemical property

Ten group representative samples of spring point were took to make chemical analysis separately, the analysis results can be seen in Table 1.
A. Salinity

Groundwater which salinity is generally low is fresh water, anionic is mainly made up of HCO$_3^-$, cationic is mainly made up of Ca$^{2+}$, salinity range 122~314 mg/l, belong to low salt. There are three place of water with high salinity, exposed in Russia full landslide, tie families and armor in landslides respectively, anion is given priority to SO$_4^{2-}$, cationic is mainly given priority to Ca$^{2+}$, genera of mineralized water.

B. The main ion

There are four water types in the ten groups of water, anionic is mainly given priority to HCO$_3^-$, followed by SO$_4^{2-}$, and cationic is mainly given priority to Ca$^{2+}$.

C. pH value

pH value is partial neutral, the range between 7.2 and 8.2, only pH in one place is under 7.0, and exposed in an abandoned mine at east slope.

Mineral analysis

Appraisal analysis equipment of rock minerals composition is transmission-reflection optical microscope which type is Jiangnan XP-213, and photographic equipment is Nikon EVLIPSE LV100POL. Environmental parameters of the tests include test temperature and test humidity, and the value is 25 °C and 55% respectively. There are respectively mineral composition analyses of rock which are come from ten positions, and the analysis results such as shown in Table 2. The texts of the ten mineral can be seen in Fig. 3.
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>(8%) Packing granular, size is 0.03~0.85mm</td>
<td>Hornblende (76%) Long column, granulous, size is 0.04~1.55mm</td>
</tr>
<tr>
<td>7</td>
<td>(56%) Directional alignment, size is 0.03~0.65mm</td>
<td>(13%) Schistose, directional alignment, size is 0.06~2.2mm</td>
</tr>
<tr>
<td>8</td>
<td>Hornblende (84%) short columnar granular size is 0.05~1.97mm</td>
<td>Calcite (8%): size is 0.05~2mm</td>
</tr>
<tr>
<td>9</td>
<td>(46%) Particle at the intersection of plane is 120, size is 0.05~0.7mm</td>
<td>(17%) Schistose, thin strip, size is 0.04~2.1mm</td>
</tr>
<tr>
<td>10</td>
<td>(47%) Stretched, directional arrangement, size is 0.06~0.9mm</td>
<td>(23%) Schistose, directional arrangement, size is 0.1~3mm</td>
</tr>
</tbody>
</table>

Figure 3 The texts of the ten mineral

From the Fig.4 and Fig.5, with the increase of the hole deep, quartz content in the mica schist shows a holistic slight upward trend, the corresponding mica content declined. Among the pile number from K0+924 to K1+050, the schist is Mica quartz schist, and its quartz content significantly increases more than 50%. According to the field investigation of the whole exploratory hole, with the increase of pile number (after K0+900), the surrounding rock strength has a tendency of increase. The reasons of the surrounding rock strength increases is mainly the following several aspects.

Firstly, the increase of the rock quartz content and the decrease of the mica content give rise to the increase of the rock strength; Secondly, in the hole section after the pile number K0+900, the surrounding rock strength increases due to the decrease of the fault, the extrusion broken belt, the joint etc. Moreover, with the shortening excavation time than the first half and the weakening of the unloading relaxation of surrounding rock, the effect of the groundwater and the stress release is relatively small, and so that the strength of surrounding rock is enhanced. Chemical property and the mineral analysis of the ten groups showed that the corrosion
of groundwater near the F6 is strong. So, the corrosion effect needs further research.

Figure 4 Quartz content in the mineral

Figure 5 Mica content in the mineral

The water resistance analysis

Method

Generally, considering from the chemical reaction between the corrosiveness of groundwater with concrete and reinforced concrete, the chemical corrosion of groundwater can be divided three kinds, including decomposition type corrosion, crystal type corrosion and crystallization decomposition composite category corrosion. The corrosion mechanism classification according to the investigation of different, here introduces the classification scheme of the Ministry of Communications.

Decomposition type corrosion is that the Ca(OH)2 of cement with H+, CO2, H2CO3 of water neutralizing and dissolving, making cement broken down. So concrete has a soft saw and honeycomb structure.

\[
\begin{align*}
\text{CO}_2 + \text{Ca(OH)}_2 & \rightarrow \text{CaCO}_3 + \text{H}_2\text{O} \\
\text{CaCO}_3 + \text{CO}_2 + \text{H}_2\text{O} & \rightarrow \text{Ca(HCO}_3\text{)}_2 \\
\text{2NH}_4\text{Cl} + \text{Ca(OH)}_2 & \rightarrow \text{2NH}_3 + \text{CaCl}_2 + \text{2H}_2\text{O}
\end{align*}
\]

Crystal type corrosion through the contact with the salt of water and concrete forms a new aqueous crystal from the composition of concrete. These crystals are in the process of forming swelling action, so that the concrete appearance is in the bursting destruction, such as:

\[
\begin{align*}
\text{MgSO}_4 + \text{Ca(OH)}_2 + \text{H}_2\text{O} & \rightarrow \text{Mg(OH)}_2 + \text{CaSO}_4 \cdot \text{H}_2\text{O} \\
\text{3CaSO}_4 + 3\text{CaO} \cdot \text{Al}_2\text{O}_3 + 3\text{H}_2\text{O} & \rightarrow 3\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 3\text{CaSO}_4 \cdot 3\text{H}_2\text{O}
\end{align*}
\]

The operability is poor although the concept is clear. For example, it can not only produce crystal type corrosion, but also produce crystallization decomposition composite category corrosion. Different corrosion probably is generated by the same factors, and same kind of erosion probably is produced by a variety of factors.

Tunnel erosion includes dissolve out erosion (HCO3−), carbonate erosion (aggressive CO2), general acid corrosion (H+), sulfate corrosion (SO42−), magnesium salt corrosion (Mg2+), and etc. According to the discriminate standard of corrosion the water of environment to concrete, the chemical corrosion types of concrete influence by environmental water mainly include: decomposition, decomposition crystalline compound and crystal. According to the degree of erosion, it can be divided into four grades: no erosion, weak erosion, medium erosion and strong erosion.

In accordance with the evaluation standard in China “the geological investigation specification of water conservancy and hydropower engineering”(GB50487-2008), the environmental evaluation criteria of influence on concrete corrosion is as fellows.

The result

A. According to the evaluation about fissure water of environment to tunnel sulfate: the index of the ordinary cement have weak corrosive is that the SO42− concentration should be greater than 250 mg/l, the index of against sulfate cement have weak corrosive is that the SO42− concentration should be greater than 3000 mg/l; And the value of SO42− are far less than 3000 mg/l, it have no effect against sulfate cement. SO42− value is less than 250 mg/l in most of the
water, there is not exist crystalline corrosion problems for the ordinary cement. It is only 7 # water sample (and full landslide) and 8 # water sample (tie families ore in the adit) SO$_4^{2-}$ value more than 250 mg/l, it have weak corrosive action to the ordinary cement, the proposal design should be considered (see Table 3).

B. The pH value of the evaluation criteria is: pH > 6.5 no corrosion, 6.5 ≥ pH > 6.0 weak corrosion, 6.0 ≥ pH > 5.5 moderate corrosion, pH ≤ 5.5 strong corrosion. The groundwater has acid corrosive effect, when its pH value less than 6.5. But as the result of the water quality analysis from water samples, the groundwater pH is substantially greater than 6.5, so it has no acid problem to the concrete. According to the decomposability-corrosion evaluation of the concrete affected by osmosis water.

C. If HCO$_3^-$ > 1.07, there is no corrosion, if 1.07 ≥ HCO$_3^-$ > 0.70 there is weak corrosion, if HCO$_3^-$ ≤ 0.70 there is strong corrosion. It shows that the smaller concentration has the greater erosiveness. From the result of water quality of water samples, all the concentration of HCO$_3^-$ are far more than 1.07 mmol/L. Therefore, there exist no dissolution properties of corrosion.

Under the function of osmosis water, the Ca (OH)$_2$ successively loses with water in the concrete which reduce the concentration of solution CaO, when HCO$_3^-$ in water content is too low. When the concentration lower than 1.3 mg/l, the crystal Ca (OH)$_2$ in concrete will run off while dissolve into water, CaO in C$_3$S (tricalcium silicate) and C$_3$A (tricalcium aluminate) is successively resolved and dissolved into water, which let the structure of the concrete become loose, and the strength decrease.

<table>
<thead>
<tr>
<th>NO.</th>
<th>SO$_4^{2-}$ (mg/l)</th>
<th>pH</th>
<th>HCO$_3^-$ (mg/l)</th>
<th>Mg$^{2+}$ (mg/l)</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.8</td>
<td>7.2</td>
<td>215.6</td>
<td>114.3</td>
<td>No crrosion</td>
</tr>
<tr>
<td>2</td>
<td>69.1</td>
<td>7.5</td>
<td>173.9</td>
<td>124.0</td>
<td>No crrosion</td>
</tr>
<tr>
<td>3</td>
<td>73.0</td>
<td>7.7</td>
<td>141.4</td>
<td>115.2</td>
<td>No crrosion</td>
</tr>
</tbody>
</table>

The evaluation indicator of corrosive concrete is that action Mg$^{2+}$ concentration should be greater than 1000 mg/l. In the tunnel areas, according to 10 test results of analysis water samples, the maximum concentration of Mg$^{2+}$ is 343 mg/l, which is far less than the predetermined value. Therefore, the groundwater in the study area can not corrode the concrete with decomposition of complex crystal according to the standard evaluation of compound corrosion affected by decomposition of crystalline.

Based on the above analysis, when diversion tunnel build through bedrock, groundwater quality is basically not adversely affect the lining concrete. Currently, “Acid erosion occurs while Calcium ion concentration>1mg/l, pH<11.63”, generally lower limit of the concentration of sulfate ion erosion is defined as 250 mg/l, pH as 10.24. According to the view, the concentration of sulfate ion of 7# water sample (the full Russian landslides), 8# water samples (Zakho mine adit within), respectively are 280 mg/l and 380 mg/l, pH value are 6.66 and 7.2, Calcium ion concentration are 102 mg/l and 173 mg/l, all of them meet the conditions of acid erosion occur.

Combined with the emersion of the water sample in the vicinity of the fault F6, the acidic erosion will oozed fault fillings, generate loose amorphous substances without gelling and strength, loose the concrete structure, prevent concrete tunnel lining corrosion damage by groundwater, and determine the need for concrete protection and protective measures.
Anticorrosive suggestions

When cement varieties is slight erosion, it can use ordinary Portland cement or resistant cement; and when the degree of erosion is medium or strong erosion, it can use ordinary Portland cement or resistance and high sulfate cement (Table 4). If it is eroded that the degree is moderate and strong, it should use reinforced concrete. If it is eroded which is slight, it can use plain concrete.

<table>
<thead>
<tr>
<th>Soil erosion grade</th>
<th>slight</th>
<th>moderate</th>
<th>strong</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain concrete</td>
<td>C25</td>
<td>C30</td>
<td>C35</td>
</tr>
<tr>
<td>Reinforced concrete</td>
<td>C30</td>
<td>C35</td>
<td>C40</td>
</tr>
</tbody>
</table>

In addition, for the cement in the cementitious materials of concrete, it can also mix with fly ash and silica fume, and the type of admixture is better to choose multifunctional composite admixture.

Determine the value C of concrete thickness is another issue. That is to say that the thickness of the protective layer of reinforced concrete.

Distance value is from the outer reinforcement (add stirrups) to the concrete surface as follows: the value of C should be more than 40mm under the conditions of slight erosion, and under the condition of medium erosion and strong erosion, it should be more than 45mm.

Conclusions

(1) The groundwater in the study area mainly consists of the bedrock fissure water, fault fissure water and the pore water which is in the loose layer. The former two types are mainly located on the left bank, the last one is mainly distributed on the right bank where the Karst is not development.

(2) Surrounding rock of tunnel is mainly two-mica schist which is weakly weathered. The integrity of rock mass is well on the whole and rock mass is mainly weakly permeable. The activity of groundwater is weak, and there is no large gushing generally.

(3) Fracture zone develop in the zone which have fault, especially the zone which the fault F_6 passes though have the outcrop of groundwater along. The covering layer of the right bank is thick, especially the thickest area is more than one hundred meters in the accumulation area of landslide. Digging tunnels may cause the water gushing because of the thin top of the cave.

(4) The groundwater of bedrock which is in the area of tunnel passes through does not adversely affect the lining concrete by the resistance analysis. There is a certain degree of acid erosion in F_6 because the content of sulfate ion of groundwater is high.

Acknowledgements

Thanks to the Cultivating programe of middle-aged backbone teachers of Chengdu University of Technology(NO. KYGG201201). This work is supported by the National Natural Science Foundation of China under Grant Nos. 41230635, 41272330 and 41002110. This work is also supported by the Reserch fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), under grant Nos. SKLGP2011Z009, and SKLGP2009Z002.

References

