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A B S T R A C T

InSAR technology provides a powerful tool to detect potentially unstable slopes across wide areas and to monitor
surface displacements of a single landslide. However, conventional time series InSAR methods such as persistent
scatterer interferometry (PSI) and small-baseline subset (SBAS) can rarely identify sufficient measurement points
(MPs) in mountainous areas due to decorrelations caused by steep terrain and vegetation coverage. In this study,
we developed a new InSAR approach, coherent scatterer InSAR (CSI), to map landslide surface displacements in
the radar line-of-sight (LOS) direction by combining persistent scatterers (PS) and distributed scatterers (DS).
The key ideas of CSI include the employment of the generalized likelihood ratio (GLR) test for the identification
of statistically homogeneous pixels (SHPs) and the use of the phase linking algorithm to estimate optimal phase
for each DS pixel. The joint exploitation of PS and DS targets dramatically increases the spatial density of MPs,
which makes the phase unwrapping more reliable. To demonstrate the effectiveness of the CSI approach, we
applied it to retrieve the historical displacements of the Jiaju landslide in Danba County of southwest China
using 19 L-band ALOS PALSAR images (2006–2011) and nine C-band ENVISAT ASAR images (2007–2008).
Multiple comparisons clearly illustrated the big advantages of CSI over PSI and SBAS in mapping landslide
displacements with more details owing to much higher (> 10 times) MP density. Furthermore, the superiority of
L-band SAR data over C-band for landslide investigation in rural environments was confirmed. Quantitative
validation of the CSI results for PALSAR data against in-situ GPS measurements suggested an accuracy of about
10.5 millimeters per year (mm/year) in terms of root mean square error (RMSE). Afterwards, the spatial-tem-
poral characteristics of the Jiaju landslide surface displacements were summarized, with a new upper boundary
for the active northern part delineated. Particularly, the northern part of the landslide moved faster than the
southern part, exhibiting a maximum LOS displacement rate of around 120 mm/year. Subsequently, the fluvial
erosion by the Dajinchuan River was identified as the predominant impact factor for the instability of the Jiaju
landslide. Finally, the major problems and challenges for the application of CSI method were discussed, and the
conclusions were given.

1. Introduction

SAR interferometry (InSAR) detects and measures ground surface
deformations from multiple platforms at high precision with wide
coverages, high resolutions, and frequent acquisitions (Bamler and
Hartl, 1998; Gabriel et al., 1989; Massonnet and Feigl, 1998; Rosen
et al., 2000; Simons and Rosen, 2007). The first successful application
of differential InSAR (DInSAR) in monitoring the Saint-Etienne-de-

Tinée landslide opened up a new capability for landslide measurement
(Fruneau et al., 1996). However, DInSAR is limited by temporal and
geometrical decorrelations (Zebker and Villasenor, 1992) and atmo-
spheric delay anomalies (Massonnet and Feigl, 1998). Over the past two
decades, time series InSAR techniques were developed to overcome
these limitations by focusing on coherent radar targets instead of the
ensemble of image pixels (Berardino et al., 2002; Ferretti et al., 2001;
Hooper, 2008; Hooper et al., 2004; Iglesias et al., 2015; Lanari et al.,
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2004; Mora et al., 2003). Time series InSAR techniques can be grouped
into two main categories: persistent scatterer (PS) and distributed
scatterer (DS) according to the scattering mechanisms of the ground
targets used.

In general, PS approaches focus on point-like coherent targets
dominated by a single scatterer. These targets exhibit highly stable
backscattering behaviour and usually correspond to artificial reflectors,
man-made structures, or bare rocks. PS approaches take a single-master
strategy and only produce N − 1 interferograms from N single-look
complex (SLC) images co-registered to a common master image. Typical
algorithms include PSInSAR™ (Ferretti et al., 2001), IPTA (Werner
et al., 2003), StaMPS/PSInSAR (Hooper, 2008; Hooper et al., 2004),
SPINUA (Bovenga et al., 2006; Bovenga et al., 2004), STUN (Kampes,
2006), SPN (Crosetto et al., 2008; Kuehn et al., 2010), PSP (Costantini
et al., 2008; Costantini et al., 2014), and GEOS-PSI (Ng et al., 2012).

In contrast to PS methods, DS approaches employ distributed targets
that contain lots of small random scatterers without one being domi-
nant (Bamler and Hartl, 1998). Distributed targets such as bare soil,
sparsely vegetated or desert lands, are typically found in rural en-
vironments. In DS approaches, M (N − 1 < M < N(N − 1) / 2)
multi-master interferograms with short spatial-temporal baselines are
generated. Classical DS algorithms include SBAS (Berardino et al.,
2002; Casu et al., 2006; Lanari et al., 2004; Schmidt and Bürgmann,
2003), QPS (Perissin and Wang, 2012), π-RATE (Biggs et al., 2007), and
TCPInSAR (Zhang et al., 2011; Zhang et al., 2012).

The new-generation time series InSAR techniques were developed to
further maximize the spatial sampling of deformation signal over rural
regions. One is the multi-temporal InSAR (MTInSAR) that integrates
StaMPS/PSInSAR and SBAS methods (Hooper, 2008). Unlike the
MTInSAR algorithm, SqueeSAR™ jointly processes PS and DS targets to
retrieve the deformation signal (Ferretti et al., 2011). Particularly, this
method makes full use of all the possible combinations, i.e. N(N − 1) /
2 interferograms, to pre-process DS targets, without limitation on
temporal or geometrical baselines. Recently, some extended algorithms
were developed following the principle of SqueeSAR™, such as JSInSAR
(Lv et al., 2014), CAESAR (Fornaro et al., 2015), PD-PSInSAR (Cao
et al., 2015), and GEOS-ATSA (Du et al., 2016; Ge et al., 2014; Ng et al.,
2015).

The time series InSAR techniques have been widely applied to de-
tect potentially unstable slopes and monitor local-scale landslides
(Colesanti et al., 2003; Colesanti and Wasowski, 2006; Confuorto et al.,
2017; Costantini et al., 2017; Di Martire et al., 2017; Eriksen et al.,
2017; Hilley et al., 2004; Shi et al., 2016; Wasowski and Bovenga,
2014). However, there is few reported work combining PS and DS
targets to investigate landslides. In addition, in SqueeSAR™, a key step
is to identify SHP, implemented through the embedded DespecKS pro-
cedure (Ferretti et al., 2011). DespecKS employs the Kolmogor-
ov–Smirnov (KS) test to discriminate if two amplitude series belong to
the same statistical distribution (Stephens, 1970). Nevertheless, the KS
test needs a large number of SAR images (N > 20) to robustly support
the null hypothesis that the two samples were drawn from the same
population (Jiang et al., 2015). Meanwhile, the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm adopted to solve the problem of
optimal phase estimation in SqueeSAR™ has a very high computation
time cost (Fletcherwrited, 1981).

In this study, we propose a new approach, named coherent scatterer
InSAR (CSI), to investigate landslides by combining PS and DS targets.
The PS targets are pre-processed using the conventional procedure
(Hooper et al., 2004), while the DS pre-processing differs from
SqueeSAR™ in two aspects. First, if the number of available images is
less than 20, the generalized likelihood ratio (GLR) test is adopted as an
alternative of the KS test for SHP identification. Second, a phase linking
approach is implemented to estimate the optimal interferometric phase
values from the complex coherence matrix for each DS target (Monti
Guarnieri and Tebaldini, 2008). The pre-processed PS and DS scatterers
are combined to create the Delaunay triangular network for phase

unwrapping and the deformation is estimated using standard time
series analysis procedure. The combination of PS and DS significantly
increases the spatial density of MPs, and thus makes phase unwrapping
more robust.

The CSI method was applied to study the Jiaju landslide in Danba
County, China using archived ALOS PALSAR and ENVISAT ASAR da-
tasets. Comparisons among the results of CSI, StaMPS/PSInSAR (PSI in
abbreviation) and SBAS were carried out to demonstrate the advantages
of the CSI method. The deformation rates measured by the two SAR
datasets were compared for the evaluation of cross-sensor consistency.
The CSI results derived from PALSAR datasets were quantitatively va-
lidated using in-situ GPS measurements. Furthermore, the spatial-tem-
poral characteristics of the Jiaju landslide deformation were analyzed,
and the driving factors for the landslide instability were sorted out.
Finally, discussions and conclusions were given.

2. Study area

2.1. Geological setting

Danba, a county of Garzê Tibetan Autonomous Prefecture, is si-
tuated in Sichuan Province, southwest China. Danba County is located
between national highways G317 and G318, with provincial roads S211
and S303 passing through, as seen in Fig. 1. The Dajinchuan River
drains into the famous Dadu River at Danba County.

The study area lies in the east margin of the Qinghai-Tibet Plateau
and belongs to the Minshan-Qionglai Alps. It is characterized by steep
terrains and alpine valleys with the altitude varying from 1700 m to
5520 m above sea level (a.s.l.). Many hillsides are mantled by super-
ficial deposits, which also include considerable amounts of rough ma-
terials from rock falls and rockslides. There is a wide variety of meta-
morphic and tectonic deformations in this complicated geological area.
As a key forest area in southwest China, Danba has a range of dense
forest vegetation types, but short shrubs cover approximately 46% of
the area.

Located in the Qinghai-Tibet plateau monsoon climate zone, Danba
has moderate annual rainfall that is concentrated in the summer
months, with an average annual rainfall of 594 mm. Consequently,
strong polymetamorphism and tectonic movements, rock falls, land-
slides and debris flows break out frequently and widely in the area
(Huang, 2009). Human activities, road construction, building expan-
sion, and irrigation, also cause new landslides or reactivate old land-
slides. In the last decade, numerous geological disasters, especially
landslides, occurred in Danba County, causing enormous economic
losses and loss of life and property (Chen et al., 2005; Deng et al., 2017;
Yin et al., 2008).

2.2. Jiaju landslide

The Jiaju village, not far away from Danba town, is well known for
its special Tibetan-style buildings. It is rated as one of the most beautiful
Chinese villages. The flourishing tourism promotes the rapid expansion
of Jiaju village to several times of its original size in the last two dec-
ades. Unfortunately, it is located on a giant slow-moving landslide as
shown in Fig. 2. The background image is a shaded high-resolution
digital surface model (DSM) at a resolution of 0.2 m acquired by UAV
aerial photogrammetry in March 2017.

The Jiaju landslide looks like a capital M in shape with the
boundary outlined by the black lines in Fig. 2. It can be divided into
northern and southern parts, with the slope ranging from 10° to 32° (Yin
et al., 2010). Jiaju landslide covers an area of 1.2 km2, with a length of
1200 m in EW direction and a width of 1000 m in the SN direction.
According to geophysics exploration and borehole drilling, the land-
slide body has a thickness of 20–90 m and it is comprised of detritus
earth and boulders with some silt clay, as shown in Fig. 3. Its volume is
estimated to be about 26 million m3.
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There is a major fracture at the center of the landslide, about 30 m
in length, 5–15 cm in width, and 30–60 cm in depth. Many houses with
cracks can be found along the fracture belt. During the rainy season,
small surface fissures appear in the rear part of the landslide, while
several perennial and manmade ditches are found along the slope,

penetrating into the earth surface mass. A geological survey showed
that the northern part of the Jiaju landslide moves faster than the
southern part and the rear slides slower than the front (Deng et al.,
2011; Yin et al., 2008).

A photo taken in July 2008 gives an overall perspective view of the

Fig. 1. The location of the study area and the image cov-
erages of ALOS PALSAR and ENVISAT ASAR data stacks.
The background is the shaded ASTER GDEM of 1 arcsecond
resolution.

Fig. 2. Planar overview of the Jiaju landslide. The red ar-
rows indicate the horizontal deformation rates of the 20
GPS monitoring stations. The background is the shaded
DSM produced in March 2017. The landslide boundary is
defined by Yin et al. (2010). (For interpretation of the re-
ferences to color in this figure legend, the reader is referred
to the web version of this article.)
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Jiaju landslide, as shown in Fig. 4(a). The photo in Fig. 4(b) taken in
May 2015 illustrates the damage to the S211 roadway and slope foot
induced by erosion from the Dajinchuan River. A crack with a width of
about 10 cm was found in the road at the rear of Jiaju landslide, as
shown in Fig. 4(c).

3. Data

3.1. Satellite SAR datasets

Archived SAR datasets collected by the ALOS and ENVISAT sa-
tellites were used to map the displacements of the Jiaju landslide. A
total of 19 L-band ALOS PALSAR level 1.0 raw data products were
acquired from path 478 between December 2016 and January 2011,
and nine C-band ENVISAT ASAR SLC images were captured from track
455 during a shorter period from August 2007 to June 2008. Both
datasets were acquired in ascending right-looking geometry but with
different look angles (34° for PALSAR and 38° for ASAR). The detailed
acquisition parameters for these two SAR data stacks are listed in
Table 1, with their coverages shown in the inset map of Fig. 1.

Fig. 5 illustrates the different interferometric combinations of
PALSAR images for PSI, SBAS, and DS pre-processing. The black dots
represent SAR observations and the lines linking the dots indicate in-
terferometric data pairs. The horizontal axes refer to the observation
dates while the vertical axes correspond to the normal baselines.

In addition, since a reference DEM is required to estimate and re-
move the topographic phase in the two-pass DInSAR processing, the
ASTER GDEM of 1 arc-second resolution with overall estimated vertical
accuracies between 10 and 25 m in terms of root mean square error
(RMSE) was also collected (Fujisada et al., 2005), as shown in Fig. 1.

3.2. GPS measurements

A GPS observation network was set up in August 2006, including
20 monitoring stations deployed over the landslide body and two re-
ference stations installed on the stable bedrock nearby (Yin et al.,
2010). The spatial distribution of all the GPS stations is shown in Fig. 2.
The red arrows indicate the directions and magnitudes of the horizontal
displacement rates of GPS monitoring stations. The stations G1 and G2
located outside the landslide boundary are selected as reference points,
and assumed to be stable.

The GPS observation data has been collected from August 2006 to
December 2013 with four epochs per year, which completely covers the
acquisition times of both PALSAR and ASAR datasets. The dual-fre-
quency Trimble 5700 GPS receivers with a 15 second interval were
used and the elevation mask was set as 10° for all stations. For the
monitoring stations, the length of surveying sessions was 24 h, while
3–6 days for the reference stations. The GAMIT/GLOBK software was
employed to process the GPS observation data. The epochs in August
2006 and September 2007 were dropped due to abnormal observations

Fig. 3. Engineering geological profiles of the Jiaju land-
slide. (a) section I–I′, (b) section II–II′. The location of the
profiles is indicated by the black dashed lines in Fig. 2.
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at all stations.

4. Methodology

In this article, a new time series InSAR analysis procedure named
CSI is proposed to measure landslide deformation by combining per-
sistent and distributed scatterers. The CSI method consists of three
steps, i.e. PS pre-processing, DS pre-processing, and joint analysis of PS
and DS, as shown in the flowchart of Fig. 6.

As shown in Fig. 6, the PS pre-processing focuses on the selection of
PS targets, while the DS pre-processing identifies the DS targets and

estimates their optimal phases. The selected PS and DS targets are
jointly processed to retrieve the deformation measurements. In the
following sections each of the three steps will be explained in detail.

4.1. PS pre-processing

In the first step, the same procedure used in StaMPS is employed to
select PS points based on amplitude and phase information (Hooper
et al., 2007), as shown in the block on the left side of Fig. 6. Since
amplitude stability can be considered as an accurate proxy of phase
stability when the coherence is high, we can apply amplitude dispersion
index (ADI) to initially select PS candidates (Ferretti et al., 2001). The
ADI of a certain pixel, denoted as DA, is defined as:

=D σ
μA

A

A (1)

where μA and σA are the mean and standard deviation of a series of
amplitude values for one pixel, respectively. Only the pixels exhibiting
ADI values under a given threshold (typically< 0.4) are considered as
PS candidates (PSCs).

Phase stability is then analyzed for each PSC under the assumption
that the deformation signal is spatially correlated. A band-pass filter is
employed to filter the phase observations of neighboring PSCs in the

Fig. 4. The onsite photos of the Jiaju landslide. (a) The overall view shows the dense vegetation coverage (July 2008), (b) the slope foot was damaged by river erosion and bank was
reinforced with many arrayed gabions (May 2015), (c) a crack in the road at the rear of the northern part (April 2017).

Table 1
The acquisition parameters of PALSAR and ASAR data used in our study.

SAR sensor ALOS PALSAR ENVISAT ASAR

Orbit direction Ascending Ascending
Microwave band (wavelength) L-band (23 cm) C-band (5.6 cm)
Resolution 10 m 20 m
Repeat cycle 46 days 35 days
Look angle 34° 38°
No. of images 19 9
Temporal coverage Dec 2006–Jan 2011 Aug 2007–Jun 2008
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frequency domain to get the residual phase noise (Hooper et al., 2007).
A phase stability indicator is defined as the temporal coherence γ in the
following mathematic expression:

∑=
=

γ
N

e1

i

N
jφ

1

n i,

(2)

where N is the number of images, φn,i is the estimated residual phase
noise of ith SLC image. The value of γ is estimated through an iterative
strategy, and the procedure ends at convergence when the RMS change
in γ is less than a given threshold. Only the PS candidates with high γ
value are kept. Optionally, the phase stability indicator can be re-esti-
mated on the selected PS pixels to refine the PS selection. The finally
selected PS pixels with their original phase values are used for further
time series analysis.

4.2. DS pre-processing

A more complicated procedure is required for pre-processing of DS
targets, which consists of two steps, i.e. SHP identification and optimal
phase estimation, as shown in the block on the right side of Fig. 6. The
details are given below.

4.2.1. SHP identification
When the available SAR images are sufficient to evaluate the am-

plitude sample (typically> 20), a KS test is applied to identify the SHP
pixels (Parizzi and Brcic, 2011). However, when the number of images
is less than 20, amplitude-based methods cannot reject non-homo-
geneous pixels. A new method is therefore introduced to accurately
identify SHP pixels in small datasets.

Inspired by the principle of NL-SAR algorithm (Deledalle et al.,
2015), we extend the general likelihood ratio (GLR) test to measure the
similarity between two pixels over time series SAR data. For N co-re-
gistered multi-temporal SLC images, a N-dimensional complex scat-
tering vector Z(x) ordered in acquisition dates can be formed at each
pixel x as:

= ⋯x z x z x z xZ( ) [ ( ), ( ), , ( )]N
T

1 2 (3)

where zi(x) (i= 1,2, …,N) is the complex value of the ith image ac-
quisition at pixel x and the superscript T stands for a transpose.

A special sample covariance matrix for pixel x is designed for the
GLR test. The N-dimensional complex scattering vector Z(x) can be
combined into N / 2 scattering vectors S(x) with two successive ele-
ments forming a pair by assuming N is an even number:

= = ⋯ = −+x z x z x k N j kS ( ) [ ( ), ( )] , 1, 2, , /2; 2 1k j j
T

1 (4)

Then the initial covariance matrix can be estimated over samples of

the same pixel taken along the temporal dimension as below:

∑=
=

x
N

x xC S S( ) 2 ( ) ( )
k

N

k k
H

1

/2

(5)

where the superscript H indicates a Hermitian transpose. The sample
covariance matrix C(x) is a Hermitian positive definite matrix, and it
follows a complex Wishart distribution with N / 2 degrees of freedom.

The logarithm for the GLR statistic under the assumption that x1 and
x2 are similar can be expressed as (Conradsen et al., 2003):

= + + − +Q q NC C C C C Cln ( , ) (2 ln 2 ln | | ln | | 2 ln | |)1 2 1 2 1 2 (6)

where C1 and C2 are the sample covariance matrices for pixels x1 and
x2, and q = N / 2. The larger the test statistic lnQ(C1,C2), the pixels x1
and x2 are more similar to each other. In general, the initial covariance
matrices are calculated using equal q samples.

In order to decrease the variance of the test, the similarity is eval-
uated over small patches instead of single pixel (Deledalle et al., 2015).
The similarity Δ(x1, x2) of two patches centered on pixels x1 and x2 is
defined as:

∑= − + +
=−

x x Q x t x tC CΔ( , ) ln ( ( ), ( ))
t p

p

1 2 1 2
(7)

where t ∈ [−p,p]2 is a 2D shift indicating the location within each
patch.

The kernel function proposed in NL-SAR is adopted to transform the
similarities into corresponding weights (Deledalle et al., 2015):

=
⎧
⎨
⎩

− ≠

=

−−( )ω x x
x x

x x
( , )

exp if

1 if

F x x c
h1 2

|G { [Δ( , )]} |
1 2

1 2

1 1 2

(8)

where F is the cumulative distribution function of Δ(x1, x2) under the
assumption that x1 and x2 are subject to the same distribution, G−1 is
the reciprocal of the chi-square distribution G with 49 degrees of
freedom, c is the mathematical expectation of G−1{F[Δ(x1, x2)]}, and
the filtering parameter h is usually set as 1/3. The empirical cumulative
distribution function F is unknown, but can be learned by sampling the
patch similarities on a selected homogeneous pure-speckle area.

For each pixel x′ in a fixed window Ω of size 25 × 25, centered on
pixel x, the weight ω(x, x′) can be obtained by applying this process. In
general, the pixels with more than 20 SHPs are selected as DS candi-
dates in order to preserve PS information (Ferretti et al., 2011). In our
approach, only if the number of SHPs with high weights (e.g.> 0.5) in
window Ω is larger than 20, then pixel x is selected as a DS candidate. A
weighted averaging estimator is employed to calculate the complex
coherence matrix for each DS candidate using the normalized complex
scattering vectors Y(x′) and their weights ω(x, x′) in a search window:
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Fig. 5. The different interferometric combinations of PALSAR datasets for (a) PSI, (b) SBAS, and (c) DS pre-processing.
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When the number of available images is large, the computation time
cost of the GLR test increases significantly. An alternative method, e.g.
KS test (Stephens, 1970), can be used to identify the SHP. Since the KS
test requires a large number of samples (Jiang et al., 2015), it is used to
identify the SHP set Ω for pixel x only when N > 20. The sample
complex coherence matrix can be estimated as follows:

∑= ′ ′
′∈

x
N

x xT Y Y( ) 1 ( ) ( )
x

H
KS

Ω (10)

4.2.2. Estimation of the optimal phase
The optimal phase series of each pixel, θ = [θ1, θ2, …, θN]T can be

estimated using the coherence matrix as calculated in Section 4.2.1.
Without loss of generality, we set the first value of θ as zero, i.e. θ1 = 0.
The maximum likelihood estimation (MLE) of θ is computed as follows:

Fig. 6. Flowchart of CSI method.
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= − ∘−θ η T T ηargmax{ ( | | ) }
θ

H
ML

1
(11)

where η= [0,ejθ2,…,ejθN]T, and the symbol ° represents the mathematic
operator of Hadamard product between two matrices obtained by Eq.
(9) or Eq. (10). Here, we employ a phase linking approach (Monti
Guarnieri and Tebaldini, 2008) to solve this equation, which can be
expressed in a closed form as:

∑= ⎧
⎨
⎩

⎫
⎬
⎭≠

− −
θ jθT Targ {| | } { } exp( )n

k

m n

N

mn mn m
k1 1 

(12)

where k is the iteration step.
The quality of estimated optimal phases can be measured by the

goodness of fit formulated as:

∑ ∑=
− = = +

− −γ
N N

e e2 Re
m

N

n m

N
jϕ j θ θ

2
1 1

( )mn m n

(13)

where γ is the goodness of fit index, an extension of the temporal co-
herence (Ferretti et al., 2000), ϕmn is the phase value of the item at row
m and column n of the coherence matrix, and θm and θn are the esti-
mated optimal phases. The DS candidates will be further weeded ac-
cording to the goodness of fit index. Only those candidates exhibiting a
γ value higher than a predefined threshold will be selected as the final
DS targets.

4.3. Combined analysis of PS and DS

The DS targets with estimated optimal phases are equivalent to
quasi-PS targets. They can be combined with PS targets for further
analysis using a standard PSI tool, as shown in the bottom block of
Fig. 6. Here the StaMPS/PSInSAR processing program is used (Hooper
et al., 2007). DS pixels that coincide with PS pixels are dropped. All the
PS and DS pixels are connected to form the Delaunay triangulation
network for phase analysis. The phase is firstly corrected for the spa-
tially uncorrelated part of the look angle error due to the DEM error and
pixel phase center uncertainty. The 3D phase unwrapping is then im-
plemented to unwrap the interferometric phase in temporal and spatial
dimensions (Hooper et al., 2012). Optionally, the unwrapped phases
can be filtered by a high-pass filter in time and a low-pass filter in space
to estimate the remaining spatial correlated nuisance terms, such as the
atmospheric and orbital phase. Finally, the deformation rate and time
series can be retrieved after subtracting above phase components
(Hooper et al., 2007).

5. Performance evaluation of CSI

In this section, the performance of DS pre-processing including SHP
identification and optimal phase estimation is first investigated. The
accuracy of CSI method is then assessed by inter-comparison between
different methods and different SAR datasets and evaluated against in-
situ GPS measurements.

5.1. DS pre-processing

5.1.1. SHP identification
We compared the SHP identification capabilities of GLR test and KS

test by changing the number of PALSAR images used. The river was
selected as a homogenous area, as shown in the optical image from
Google Earth™ in Fig. 7. The big red point located in the center of the
PALSAR mean amplitude maps represents the reference pixel. The color
indicates the level of similarity with blue and red colors corresponding
to complete dissimilarity and similarity, respectively.

GLR test correctly assigned heterogeneous pixels with near-zero
weights, and other pixels with nonzero values according to their simi-
larity with respect to the reference pixel. In contrast, the KS test mis-
classified some heterogeneous pixels as SHP, particularly when the

number of images was small. The KS test is highly sensitive to the
number of images, while the GLR test yields satisfactory results even for
small datasets, such as six images. Therefore, we employed the GLR test
to identify SHP pixels for small datasets, such as the PALSAR and ASAR
data stacks used in this study.

5.1.2. Optimal phase estimation
The complex coherence matrices for DS pixels were computed using

the identified SHP pixels. The optimal phase values of DS pixels were
retrieved using the phase linking method described in Section 4.2.2. In
principle, the adaptive estimation of the coherence matrix and the
phase linking operation are equivalent to spatial and temporal adaptive
filtering of the interferometric phases, respectively. Fig. 8 presents the
original noisy, adaptively filtered, and unwrapped interferometric
phase for the data pair of 27 June 2008 vs. 25 September 2007, zoomed
on the Jiaju landslide. The phase noise was largely filtered, which
makes phase unwrapping more accurate.

The goodness of fit index was computed using Eq. (13) on the op-
timal phase. The DS candidates were further selected by thresholding
the goodness of fit index. In our experiment, for both PALSAR and
ASAR datasets, only DS candidates exhibiting an index higher than 0.65
were kept for further time series analysis. The DS targets, combined
with the PS points, are used to estimate the deformations, whose ac-
curacy is evaluated by follows.

5.2. Accuracy assessment of CSI measurements

5.2.1. Consistency among PSI, SBAS and CSI measurements
The images covering the whole slope, larger than the Jiaju land-

slide, were processed for assessment purpose. Fig. 9 shows the maps of
line-of-sight (LOS) deformation rates measured by PSI, SBAS, and CSI
from PALSAR and ASAR data stacks, respectively. The deformation
signals in the CSI-derived results are clearer than those estimated by PSI
and SBAS methods. The spatial reference point was set at the location of
GPS station G2.

The total number of MPs and corresponding spatial density detected
by the three methods are listed in Table 2. As expected, the proposed
CSI method identified many more MPs than either PSI or SBAS. For the
PALSAR data stack, the number of MPs detected by CSI increased by
about 15 and 10 times with respect to those obtained by PSI and SBAS
separately. For the ASAR data stack, a similar pattern was observed
with the corresponding increments being 25 and 10 times. Further-
more, the number of MPs detected by CSI and SBAS from PALSAR data
was almost five times those derived from ASAR data, which might be
attributed to the higher spatial resolution and less decorrelation for the
L-band PALSAR data.

In order to assess the consistencies among the results obtained by
PSI, SBAS and CSI, correlation analyses were carried out between each
pair of deformation rate measurements produced by each of the three
methods for both PALSAR and ASAR data. Fig. 10 shows bi-variable
scatterplots for all six pairs. For each pair, only the common MPs are
plotted and used for calculation of the Pearson correlation coefficients
and the mean/standard deviation of differences between the results.

A few points can be inferred from Fig. 10. First, the correlation
between PSI and SBAS was the highest for both data stacks, while CSI
results show higher correlation with SBAS than with PSI. This pattern
agrees well with the significant differences in MP detection capability
among the three methods. Second, ASAR data yielded overall better
consistency than PALSAR, which might be justified by the facts that the
numbers of common MPs selected for ASAR data are much less than
those for PALSAR. Most MPs for ASAR are more concentrated around
the zero value than the MPs for PALSAR. Thirdly, some outliers can be
clearly identified in the first two scatterplots of Fig. 10, as marked by
the blue dashed ellipses. The existence of such outliers suggests that
there is significant underestimation in the PSI-measured deformation
rates for the PALSAR data when compared with SBAS and CSI results.
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5.2.2. Cross-comparison between PALSAR and ASAR derived deformation
rates

As revealed by Table 2 and Fig. 9(e) and (f), the proposed CSI
method detected many more MPs from the PALSAR data stack than
from ASAR, which clearly shows the big advantage of using L-band SAR
data in landslide studies over C-band data owing to less decorrelation
and deeper penetration capability into vegetation. Nevertheless, the
results derived from both datasets show a generally similar spatial
distribution pattern of active deformation areas. In order to check the
inter-sensor consistency of deformation rate measurements, we carried

out a cross-comparison of the CSI results for the PALSAR and ASAR
datasets.

In consideration of the mismatch of MPs from the two datasets in
geolocation due to dissimilar imaging geometries, we first unified them
into a common geographic grid of one arc-second resolution by re-
sampling and aggregation. In particular, the deformation rate value for
each grid cell was calculated by averaging the MPs falling within it. The
scatterplots of deformation rates derived from the two SAR datasets are
given in Fig. 11(a), with a good correlation of 0.79. The root mean
square error (RMSE) of the difference is 10.3 mm/year. Such a

N=6 N=10 N=14 N=18

Fig. 7. Test of SHP identification with different number of images. First row: KS test, second row: GLR test, third row: corresponding optical image over the same area from Google
Earth™. Blue color denotes complete dissimilarity, while red color indicates complete similarity, and other values represent similarity level between 0 and 1. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. The differential interferograms over the Jiaju landslide for the pair of 27 June 2008 vs. 25 September 2007, with a temporal interval of 276 days and a normal baseline of 584 m.
(a) Noisy phase, (b) estimated optimal phase, and (c) unwrapped phase.
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Fig. 9. The LOS deformation rates derived from both PALSAR (left column) and ASAR (right column) data using three different time series InSAR techniques. (a–b) PSI, (c–d) SBAS, and
(e–f) CSI. The background image is the shaded ASTER GDEM.
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difference may be caused by various factors such as inconsistent tem-
poral coverage, different look angle, and data processing errors.

5.2.3. Validation of PALSAR-measured deformation rates using GPS
measurements

To quantitatively evaluate the accuracy and reliability of CSI results,
we performed comparisons between CSI-measured deformations from
PALSAR data and GPS measurements on the Jiaju landslides. The three-
dimensional (3D) GPS measurements were projected onto the PALSAR
LOS direction to enable the comparison. For each GPS monitoring
station, all the PALSAR measurement points located nearby with the
horizontal distance to the GPS station≤50 m were selected to calculate
a mean displacement rate. This mean value was used as a proxy for
comparison against GPS measurements. Fig. 11(b) presents a scatterplot
of displacement rates measured by GPS and PALSAR data. These two
kinds of measurements agree well with each other, showing a strong
correlation of about 0.97. The RMSE of the difference was 10.5 mm/
year.

In addition to correlation analysis of displacement rate measure-
ments, we also compared the time series displacements measured by
CSI from PALSAR data and GPS measurements. For each GPS

monitoring station, the spatially nearest PALSAR measurement point
was taken for comparison. To ensure comparability, both time series of
accumulative displacements were calibrated with respect to the corre-
sponding PALSAR/GPS observations in the end of 2006. The calibrated
displacement time series for all the GPS monitoring stations are plotted
in Fig. 12, with the corresponding discrepancy in displacement rate
reported. In general, both time series measurements match well with
each other and show similar evolution trends at most stations.

More specifically, 13 out of the 20 monitoring stations exhibit dis-
crepancies in the displacement rate between GPS and InSAR less than
10 mm/year, and four stations show discrepancies between 10 mm/
year and 15 mm/year. Only three stations, i.e. G12, G18, and G22, have
discrepancies larger than 15 mm/year. The smallest difference of
−0.537 mm/year was found at station G8. In addition, the GPS ob-
servations for G3 seem unreliable since the time series displacements
fluctuated extraordinarily, as shown by the first plot in Fig. 12.

The discrepancies between InSAR and GPS measurements may be
attributed to a few factors. One is the spatial mismatch between the
InSAR measurement points and the GPS stations. Since uneven dis-
placements were detected over the Jiaju landslide as shown in Fig. 9, a
distance of a few tens meters might cause significant variation of dis-
placement measurements. Another key factor is the asynchronous ob-
servations by the two techniques along the temporal dimension. As
revealed by Fig. 12, the temporal evolution of displacements is not a
perfect linear procedure. Therefore, different observation periods and
different temporal sampling schemes would inevitably result in dis-
crepancy of displacement measurements.

In summary, overall good agreement between different InSAR
methods, between different SAR datasets and between InSAR and GPS
were obtained, which suggests that the proposed CSI method can
achieve accurate and reliable surface displacement measurement for

Table 2
Number of MPs and their spatial density in the results of the three methods.

Number of MPs Spatial density (MPs/km2)

PALSAR ASAR PALSAR ASAR

PSI 30,902 4291 323 44
SBAS 47,559 10,298 498 107
CSI 474,368 104,281 4973 1093
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Fig. 10. Correlations between deformation rates measured by PSI, SBAS and CSI on the common MPs. (a–c) PALSAR dataset, and (d–f) ASAR dataset.
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landslides in mountainous areas. In contrast to GPS observations, the
InSAR technique provides measurement points at much higher density,
equivalent to thousands of GPS stations per km2. The CSI method
however, detects many more points than the two classical time series
InSAR techniques, i.e. PSI and SBAS in rural environments.

6. Characterization of landslide deformation activities and related
impact factors

The deformation rate maps in Fig. 9 show that there are actually
four visibly unstable zones over the giant slope of Niexia Township, the
L1, L2, L3, and Jiaju landslides. The L1 landslide had the largest sliding
range from the summit to the hillside (circa 3000–4500 m a.s.l.), but
with relatively slight motion. Due to inaccessibility and being far away
from human settlements, this landslide has never drawn much attention
before our study. According to our knowledge, the surface displace-
ments of this landslide likely correspond to rock debris motion that was
driven by seasonal snowmelt. The other three detected landslides were
located at the slope foot near the provincial road S211 and Dajinchuan
River. All of their maximum LOS deformation rates were larger than
100 mm/year. The deformation characteristics of the Jiaju landslide
and impact factors for its instability are analyzed in detail in the fol-
lowing sections.

6.1. Deformation characteristics of the Jiaju landslide

The LOS deformation rates over the Jiaju landslide measured by PSI,
SBAS, and CSI separately from the PALSAR data stack are illustrated in
Fig. 13. Evidently, the PSI-derived MPs are so sparse that it was very
difficult to identify the landslide range. Although the number of MPs
from SBAS shows a slight increase, the displacements were obviously
underestimated at the foot of the landslide with respect to the GPS
measurements. The number of MPs detected by CSI increased by nearly
ten times with more accurate deformation measurements than SBAS.
The boundaries between the stable and unstable areas are more distinct.
We can see from Fig. 13(c) that the northern part of the Jiaju landslide
underwent strong displacements at a maximum rate of about 120 mm/
year, while the southern part moved significantly slower at rates of
20–60 mm/year.

The CSI-derived deformation rate map allows us to update landslide
boundaries determined by previous geological exploration. Fig. 14 plots

the deformation rates of MPs distributed along the profiles A–B and
C–D, as marked by the black dashed lines in Fig. 13(c). The profile A–B
stretches from the top to the toe of the northern part of the Jiaju
landslide. Fig. 14(a) reveals that the area outside the old boundary (the
gray line) defined by geological exploration was also moving, sug-
gesting that the northwest boundary should be stepped outward by
580 m and upward by 200 m, with the new boundary indicated by the
black line. The bottom region in the northern part of the landslide
moved faster than the upper region. According to the local slope angle,
we can divide the profile A–B into two sections separated by the red
dashed line that corresponds to the location marked by the black arrow
in Fig. 13(c). For the upper section with a mean slope angle of about
15°, the movement was distinctly slower than that in the lower section
with a steeper slope angle of about 20°.

Another profile C–D crosses the landslide bottom from north to
south, as shown in Fig. 13(c). A sudden jump of the displacement rates
can be seen near the northern boundary of the Jiaju landslide, while no
clear boundary can be found for the southern part. The magnitude of
deformation decreased gradually from point C to D, but with a step
around the middle of the dot-dash line, which corresponds to the border
between the northern and southern parts of the landslide.

The spatial pattern of surface deformation is closely related to the
slope of the sliding surface as shown by the engineering geological
profiles in Fig. 3. The sliding surface of the northern part is steeper than
that in the southern part, and the sliding surface of the front is steeper
than that in the rear. Apparently, the steeper sliding surface had a
higher possibility of incurring larger displacements. Therefore, the
spatial pattern of surface displacements over the Jiaju landslide can be
justified.

Fig. 15 renders time series LOS displacements over the Jiaju land-
slide measured by the proposed CSI method from PALSAR data stack,
with respect to the first acquisition on 23 December 2006. Despite ir-
regular temporal sampling by PALSAR data acquisitions, the process of
spatial-temporal evolution of the Jiaju landslide was explicit, with an
approximately linear deformation trend. The maximum accumulative
displacement reached about 510 mm over the four-year period.

6.2. Impact factors for Jiaju landslide instability

As revealed by our analyses, the giant Jiaju landslide has undergone
persistent active deformation during the long period from 2006 to
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Fig. 11. Result validation. (a) Cross-comparison between PALSAR-measured and ASAR-measured deformation rates; (b) PALSAR-measured and GPS-measured deformation rates (right).
The deformation rate of PALSAR is obtained by CSI method. The deformation of GPS measurements is projected on the LOS direction of PALSAR satellite. The deformations of PALSAR
and ASAR are computed with respect to the GPS station G2.
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Fig. 12. Time series accumulative displacements measured at the 20 GPS monitoring stations. The GPS measurements were projected onto the PALSAR LOS direction. The red crosses and
blue circles are PALSAR and GPS, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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2013. Such a strong deformation might be affected by various factors
including natural processes and anthropogenic activities. Here we sort
out major driving factors and their impacts on the instability of the
Jiaju landslide.

6.2.1. Rainfall and snowmelt
Although rainfall is recognized as the most important driving factor

for the slope failure by changing groundwater level, this is not the case
for the Jiaju landslide. As a typical Tibetan Plateau monsoon climate
zone, Danba County has only a small annual mean rainfall no more than
600 mm. Hence, the impact of rainfall on the Jiaju landslide instability
was limited. Nevertheless, the seasonal snowmelt on the summit to-
gether with rainfall may have contributed to the formation of three
gullies on the landslide body. Water from these gullies infiltrates de-
posits composed of silty clay and gravelly soil, and softens soil of sliding
zone mainly composed of silty clay and gravelly soil, and softens soil of
sliding zone, likely causing local collapses and fissures.

6.2.2. Fluvial erosion
Actually, according to our field surveys, the predominant impact

factor on the Jiaju landslide instability is fluvial erosion by the
Dajinchuan River as shown in Fig. 16(a). During the flood season, the
river water level may increase by nearly 5 m with respect to its normal
status, with the peak flux exceeding 650 m3/s. The hydrodynamic
pressure variations induced by the rapid river water level changes may
lead to instability and movement at the front edge of the landslide.

The fluvial erosion is also likely attributed to the distinct shape of
the river channel. As shown in Fig. 2, the cross section of Dajinchuan
River at the foot of the Jiaju landslide is significantly smaller than both
upstream and downstream, with the minimum width of 18 m being
only about 1/3 of normal width. Such a bottleneck shape is prone to
generate persistent and strong lateral fluvial erosion by the torrential
water flow. Therefore, driven by the river erosion, the Jiaju landslide
revived in the front, and then became active in the rear.

Furthermore, from Fig. 2 we can discern that there are distinct
differences between the two sections of river channel beneath the front
edges of Jiaju landslide in the northern and the southern parts. More
specifically, the northern section is remarkably narrower than the

southern section, with the northern edge having a more convex shape
than the southern edge. Such differences may produce stronger fluvial
erosion on the northern part of landslide toe than in the southern toe,
which might account for the faster deformation in the northern part.

6.2.3. Human activities
As several villages with thousands of local Tibetan residents are

distributed over the slope upon which the Jiaju landslide is located, the
influence of human activities on the landslide instability cannot be ig-
nored. Anthropogenic disturbances are becoming more and more evi-
dent with flourishing rural tourism in Danba County over the past a few
years, and must be taken into consideration when employing mitigation
measures to reduce landslide hazards.

In general, the impact of human activities on the Jiaju landslide
instability can be categorized into three types. First, the rapid village
expansion with construction and renovation of numerous Tibetan-style
buildings as well as some infrastructures like hillside roads to meet the
demands of tourism development inevitably added huge loads to the
landslide body. Moreover, during a field survey in April 2017 we saw
tons of solid waste discharged at the rear part of the Jiaju landslide, as
shown in Fig. 16(b), which could further increase dynamic loading, and
thus destabilize the landslide.

Second, engineering works may change the surface geometry of the
landslide toe. In particular, the Provincial Road S211 at the Jiaju sec-
tion as a key transportation link was frequently damaged by the land-
slide deformation associated with fluvial erosion. Fig. 4(b) shows the
road under renovation in May 2015. The road bed close to the river was
partially destroyed by strong erosion. To reconstruct the road, the slope
toe was excavated to get earth to fill the road foundation. Steep banks
formed, creating more free faces at the slope toe, and thus the risk of
failure under gravity was increased.

Thirdly, agricultural and forestry cultivation activities further de-
stabilized the Jiaju landslide. There are many croplands and orchards
around the villages, and irrigation is essentially needed to support the
growth of crops and trees. However, when irrigated water infiltrates
into the soil, only a small percentage can usually be absorbed by the
plants, while the remainder will go deeper into the groundwater layer.
Such a change of groundwater level induced by intensive irrigation can
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Fig. 12. (continued)
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be more significant than that due to rainfall, which might cause land-
slide deformation in local areas.

7. Discussion

In an application of time series InSAR techniques for landslide in-
vestigation over steep and forested terrain, the low spatial density of
detectable coherent points generally results in phase unwrapping errors
and consequently big uncertainties in the deformation measurements.
The proposed coherent scatterers InSAR (CSI) approach jointly utilizes
both persistent and distributed scatterers to increase the number of
measurement points, with a special pre-processing strategy im-
plemented for DS target identification and optimal phase estimation.
The significantly increased MP density effectively improved deforma-
tion measurements by reducing phase unwrapping errors and raising
the measurable spatial gradient of deformation. It also allowed us to
delineate and update landslide boundaries more accurately. In parti-
cular, by using CSI our capability to detect potential landslides is sub-
stantially enhanced, since small unstable slopes that can hardly be
detected by traditional time series InSAR analyses are also identified
with CSI.

Regardless of the strengths of CSI method, the pre-processing of DS
targets is time consuming. The computational time cost for the CSI

method is approximately five times of that for traditional time series
InSAR approaches, which constitutes a major bottleneck for its appli-
cation. For a single landslide, the computational expense is still ac-
ceptable. However, for landslide investigations across wide areas, the
time cost of CSI analyses may increase to an extremely high level, and
thus how to improve the computational efficiency by adopting the
modern massively parallel computation technologies such as the gen-
eral purpose graphics processing unit (GPGPU) has become a critical
problem to be solved. On the other hand, DS pre-processing requires
huge memory and disk storage space to hold intermediate data.
According to our experiments, the storage space requirements for CSI
are around four times of that needed by the standard PSI procedure.
Therefore, another key problem worth investigation is how to optimize
the CSI algorithm, especially the DS pre-processing procedure, to sub-
stantially reduce the consumption of storage space.

Apart from InSAR methods, SAR data plays another key role in
InSAR-based landslide investigation. In our study, only medium-re-
solution PALSAR and ASAR datasets were processed. It is expected that
the CSI method can benefit from the use of high-resolution SAR data
acquired by satellites such as TerraSAR-X, COSMO-SkyMed and
RADARSAT-2. The large volume of high-resolution SAR data however,
will challenge CSI analyses.

Another challenge for the application of CSI method comes from the

Fig. 13. The LOS deformation rates of Jiaju landslide from PALSAR measured by (a) PSI, (b) SBAS and (c) CSI. The dashed lines A–B and C–D in (c) indicate the profile lines in Fig. 14. The
background is the same as that in Fig. 2.
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operation of new-generation Sentinel-1 constellation of twin C-band
SAR satellites. As the first fully operational satellite SAR mission,
Sentinel-1 offers unprecedented earth observation capability with more
frequent acquisition, more systematic wide-area coverage, better or-
bital control, and a totally free and open data policy. Undoubtedly, it
will revolutionize the application of InSAR in landslide studies, with
possible applications in wide-area detection of potential slope in-
stabilities and early warnings of specific landslide disasters.
Nonetheless, the huge data volume associated with the rapid creation
and accumulation of SAR data archives will demand far more powerful
InSAR data processing systems. Massive parallelization of the CSI
method to meet the requirements of Sentinel-1 InSAR data analyses is
highly desired. In addition, a sequential estimation scheme may be
integrated into the CSI procedure to implement near real-time proces-
sing of the emerging SAR big data.

8. Conclusions

In this study, a new approach of multi-temporal InSAR analysis
named CSI is proposed for mapping landslide surface displacements in
rural or vegetated environments. The CSI method jointly utilizes targets
of persistent and distributed scatterers to establish a much denser ob-
servation network to perform more reliable phase unwrapping so as to
obtain more accurate displacement measurements than conventional
time series InSAR approaches. In particular, two algorithms were

employed in the pre-processing of DS targets. The GLR test was adopted
as an alternative to the KS test to robustly identify SHP pixels from
small SAR data stacks. A phase linking approach was used to estimate
the optimal phase values of DS targets.

To evaluate the effectiveness of the proposed CSI method, we ap-
plied it to detect historical displacements of the Jiaju landslide in Danba
County, southwest China from two SAR data stacks of 19 ALOS PALSAR
images and nine ENVISAT ASAR images. Comparisons among multiple
displacement measurements derived by PSI, SBAS and CSI from both
data stacks were carried out to evaluate their consistency. The CSI re-
sults derived from PALSAR data were further validated against in-situ
GPS measurements. Finally, the spatial-temporal characteristics of Jiaju
landslide deformation and related possible impact factors were ana-
lyzed. Our major findings derived from these experimental results can
be summarized as follows.

First, the proposed CSI method as well as traditional PSI and SBAS
methods yielded similar spatial distribution pattern of surface dis-
placement rates. However, CSI detected much more MPs (> 10 times)
than the other two methods in vegetated mountainous areas, which
obviously benefits from the use of DS targets. Therefore, more details of
the Jiaju landslide displacement field can be revealed by the CSI results,
and the critical problem of displacement rate underestimation due to
MP sparsity can be effectively overcome.

Second, although CSI results derived from PALSAR and ASAR data
agreed well with each other in the identification of major active

Distance [km]

0 0.5 1 1.5 2

D
e
fo

r
m

a
ti
o
n
 r

a
te

 [
m

m
/y

]

-200

-160

-120

-80

-40

0

E
le

v
a
ti
o
n
 [
m

]

1800

2100

2400

2700

3000

3300

O
l
d

 
b

o
u

n
d

a
r
y

N
e
w

 
b

o
u

n
d

a
r
y

(a)

Distance [km]

0 0.2 0.4 0.6 0.8 1

D
e
fo

r
m

a
ti
o
n
 r

a
te

 [
m

m
/y

]

-150

-100

-50

0

50

B
o

u
n

d
a
r
y

B
o

u
n

d
a
r
y

Northern part Southern part

(b)

Fig. 14. Profiles of the deformation rate as indicated by the
(a) A–B and (b) C–D lines in Fig. 13(c).
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deformation areas, the number of MPs detected from PALSAR data was
almost five times of those derived from ASAR data, showing the big
advantage of L-band SAR data over C-band data for landslide in-
vestigation in rural mountainous areas.

Thirdly, comparisons between CSI and GPS measurements show
that an accuracy of about 10.5 mm/year was achieved by the CSI results
for PALSAR data. This suggests that the CSI method has great potential
to become a reliable tool to complement traditional geodetic techniques
for landslide deformation monitoring.

Fourthly, the spatial-temporal characteristics of surface displace-
ments over the Jiaju landslide were analyzed in details. An uneven
deformation pattern was clearly disclosed by the CSI results derived

from PALSAR data, with the maximum LOS displacement rate being
about 120 mm/year. Specifically, the northern part moves much faster
than the southern part, and in the northern part the landslide toe moves
faster than the rear. Furthermore, we delineated a new upper boundary
for the northern part by identifying the sliding range of Jiaju landslide
from the displacement rate map.

Finally, various impact factors for the Jiaju landslide instability
were qualitatively investigated. According to our field surveys and
analyses, the fluvial erosion by the Dajinchuan River was identified as
the predominant driving factor for the deformation at the landslide toe,
while the big difference in deformation rate between northern and
southern parts can be largely attributed to the disparity in erosion

Fig. 15. The time series LOS displacement maps estimated from PALSAR datasets for Jiaju landslide. The acquisition on 23 December 2006 is set as the reference image.
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strength due to dissimilar shape and orientation of river channel sec-
tions.

Using the active Jiaju landslide as an example, we have demon-
strated the great potential of the proposed CSI method for landslide
investigations in rural mountainous environments. Nevertheless, in
order to face the big challenges brought by the new-generation opera-
tional satellite SAR systems empowered with innovative technologies,
such as the Sentinel-1 in orbit and the TanDEM-L in development, we
must carry out more in-depth studies to tackle key issues including
substantial improvement of computational efficiency via algorithm
optimization and parallelization, integration with other SAR remote
sensing techniques for landslide monitoring in complicated rural en-
vironments, and 3D landslide surface displacement estimation by joint
analyses of multi-source SAR datasets.
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