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A B S T R A C T

Flexural toppling is one of the main failure modes of natural and manmade anti-dip layered rock slopes. Based on
cantilever slab tensile theory, the failure mechanism of flexural toppling was analyzed. A toppling slope is
divided into three parts: the stability, tensile and shear zones. By considering this failure mechanism, a new
stability analysis method for slopes against flexural toppling failure is proposed using equilibrium theory. In
addition, a sensitivity analysis is performed to investigate the locations of possible failure surfaces and zones as
well as changes in the stability of anti-dip rock slopes under different conditions. The results show that the
positions of the inter-column forces have almost no effect on the stability factor but affect the areas of the tensile
zone and the shear zone. The angle of the most dangerous potential failure surface increases with increasing dip
angle and slope height, whereas the stability factor is negatively correlated with the dip angle and slope height
but is positively correlated with the layer thickness. The failure mode is essentially flexural toppling when the
layer thickness is small, but the failure mode gradually transitions to shear-sliding with increasing layer
thickness. Finally, a real case study is analyzed using this method, and the calculated results are consistent with
the actual conditions.

1. Introduction

Toppling failures occur in rock masses containing a set of dis-
continuities that strike nearly parallel to the slope and dip into the
slope, and these failures have been observed in both natural and
manmade slopes. The term “toppling failure”, as applied to rock slopes,
was first suggested by Ashby.1 Goodman and Bray2 summarized top-
pling failures as having three basic modes: flexural, block and block-
flexure toppling.

Based on the limit equilibrium method, a “step-by-step” approach
was proposed by Goodman and Bray2 for the analysis of block toppling.
This approach was modified by Cruden3 and later improved by Aydan
et al.4 and Kliche.5 Zanbak6 constructed a set of diagrams to calculate
the required support forces. Following Goodman and Bray's solution, a
general analytical solution that assumes that the blocks have an in-
finitesimal thickness was developed.7–9 Aydan and Kawamoto10 first
presented a theoretical method based on the limit equilibrium method
and applied the bending theory of cantilever beams to analyze flexural
toppling failures. Based on the principle of compatibility equations,
Amini et al.11 presented a new method for analyzing and computing the
safety factor for flexural toppling failure. Amini et al.12 presented a new
analytical approach for block-flexure toppling and developed a

computer code for stability analysis and assessment. Tatone BSA and
Grasselli13 developed a Monte Carlo simulation procedure for the
probabilistic analysis of block toppling and described its implementa-
tion in a spreadsheet-based program (ROCKTOPPLE).

Physical and numerical modeling is also used to understand the
mechanisms underlying toppling failures as well as the potential for
stabilizing toppling failures. Physical modeling methods involving base
friction models and tilt tables were popular in the 1970s and early
1980s. Ashby1 utilized base friction models and tilt tables to study the
slipping and toppling mechanisms acting on jointed rock slopes. Bray
and Goodman14 carried out base friction tests and analyzed the corre-
sponding theoretical and experimental results. Recent physical mod-
eling of rock toppling has involved centrifuge modeling. Adhikary
et al.15,16 performed a series of centrifuge experiments to investigate
the mechanism of flexural toppling failure and observed the following:
(1) the basal failure plane extended from the toe of the slope and was
oriented at an angle of 12–20 degrees upward from the normal to the
layers; and (2) the two main failure mechanisms of flexural toppling,
instantaneous and progressive failure, were controlled by the magni-
tude of the joint friction angle. Zhang et al.17 observed in centrifuge
tests that the failure mode did not follow a straight failure plane, as was
proposed by Goodman and Bray.
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Because physical modeling requires considerable time and large
monetary costs, numerical simulation, which is an effective method, is
commonly used to investigate the toppling failure mechanisms of rock
slopes. Since the 1970s, many numerical techniques have been devel-
oped and successfully applied to the modeling of toppling failures.
These techniques include the distinct element method (DEM)18–20 and
the universal distinct element code (UDEC).21–23 Adhikary et al.24–26

developed a finite element model that was based on the Cosserat theory
to investigate the mechanisms of flexural toppling failure. Alzo’ubi
et al.27 used the UDEC damage model (UDEC-DM), which is a numerical
modeling methodology based on a discrete element framework, to in-
vestigate two centrifuge tests carried out by Adhikary et al.25 and Zhang
et al.17 to examine the toppling process.

As described above, many studies have been performed on toppling
failures and have resulted in significant achievements. Block toppling
and flexural toppling are two distinct types of toppling failure mode,
and the stability analysis method proposed by Goodman and Bray2 on
block toppling is not appropriate for flexural toppling. Re-
ference10–12,15,16 have developed a new technique, which consider the
stratified rock slopes as a series of cantilever slabs, to calculate the
stability of flexural toppling. However, the mechanism of flexural top-
pling has not been clarified, especially the location of the failure sur-
face. Therefore, this paper investigates the mechanisms underlying
flexural toppling failure based on cantilever slab theory and the limit
equilibrium method, and presents a new stability calculation method
for flexural toppling failure.

2. The ultimate tensile length of a cantilever slab

Flexural toppling of stratified rock slopes can be considered to in-
volve a series of cantilever slabs and the interacting forces between the
adjacent slabs; a geomechanical model of this is shown in Fig. 1. Under
the influence of external forces, these cantilever slabs deform and even
fail via tensile or shear failure modes. According to the stability and
failure mechanisms, a rock slope subject to flexural toppling is divided
into three parts from the crest to the toe: the stability zone, the tensile
zone and the shear zone. Furthermore, the tensile zone forms earlier
than the shear zone. Employing the column theory from the theory of
elasticity, the absolute value of the minimum normal stress σx at the
base of a column with unit thickness is given as follows:

= −σ M
I

y N
Ax (1)

where y denotes the thickness of the column (m), N denotes the normal
force (kN), M denotes the moment (kNm), I denotes the inertia mod-
ulus (m4), and A denotes the cross-sectional area of the column (m2).

For a cantilever slab with a base inclination of β that is acted on by
gravity, Eq. (1) takes the following explicit form:

= −σ
γh β

t
γh β

3 cos
sinx

2

(2)

where γ denotes the unit weight of the column (kN), h denotes the
column height (m), and t denotes the column thickness. In the tensile
zone, every cantilever experiences tensile damage at the base of the
column. Considering the stability factor k, the ultimate condition is
expressed as follows:

=σ σ
kx

t
(3)

where σt denotes the tensile strength of the column. By combining Eqs.
(2) and (3), we obtain the limiting tensile length of the column hlim
under gravity:

= + +h t β t β σ t
γk β6

tan 1
6

( tan ) 12 [ ]
cos
t

lim
2

(4)

3. Failure mechanism of flexural toppling

Assuming that any one column of the toppling rock slope is first
damaged by tension, its length should be longer than the limiting ten-
sile length calculated using Eq. (4). This column then produces a flex-
ural deformation larger than that of the upper column, which fails
further due to tension if this column is also longer than the limiting
tensile length. In this way, all columns with lengths that are not less
than the limiting tensile length above the first column that was da-
maged by tension also fail due to tension. Then, the column above the
top column that is damaged by tension deforms and separates from the
overlying and underlying columns. There are no interactive forces be-
tween this column and the two adjacent columns, which is also true for
all columns above the column with the limiting tensile length. There-
fore, this column does not fail due to gravity only. In conclusion, the
column with the limiting tensile length above the tensile zone is the
lower boundary of the stability zone.

As shown above, all the columns experiencing tensile failure above
the first column that failed in tension make up a retrogressive failure.
The column immediately below the first column that experienced ten-
sile failure due to gravity and the driving force is very likely to be
damaged by tension; that is, the size of the tensile zone gradually in-
creases until the normal stress is less than the tensile strength of the
base of the column. This tensile region below the first column that
experienced tensile failure is a push failure. Therefore, the tensile zone
is divided into two subzones. The column length at the lower boundary
of the tensile zone is denoted by hx. The region between the lower
boundary of the tensile zone and the toe of the slope is the shear zone.
Based on this discussion, the failure mode of rock slopes that experience
flexural toppling is described in Fig. 2. Furthermore, the size of each
zone along the failure surface is expressed as shown in Fig. 2 and cal-
culated using the following equations.

First, the length of the failure surface behind the base of the longest
column, ldown, and the length of the failure surface ahead of the base of
the longest column, lup, are calculated as follows:

= − +
= +

l y α β
l y α β

tan( )
tan( )

down

up

max 1

max 2 (5)

where ymax indicates the length of the column at the top of the rock
slope, which can be obtained as follows:

= −
+

y
α β

α
H

cos( )
sinmax

1

1 (6)

Based on the geometric relationships, we obtain the following
equations:

= − =
+

− −h y Δy
l x

l
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max lim

(7)Fig. 1. Geomechanical model for flexural toppling failure of rock slopes.
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where xlim and xmin denote the x-coordinates of the column with the
limiting tensile length and the intersection point between the failure
plane and solid ground, respectively.

Based on Eq. (7), xlim is written as follows:
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By combining Eq. (8a) and Eq. (8b), we obtain xmin as follows:
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Then, the length of the failure surface in the stability zone lsta is
calculated as follows:

= −l x xsta lim min (11)

Using x, which is the x-coordinate of the boundary between the
tensile zone and the shear zone, the lengths of the failure surfaces in the
tensile zone, lt, and the shear zone, ls, are expressed as follows:
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where lt,down denotes the length of the failure surface in the tensile zone
in the lower portion of this region, and lt,up denotes the length of the
failure surface in the tensile zone in the upper portion of this region.
Furthermore, the area and weight of the tensile zone and the shear zone
are obtained as follows:
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where Gt,up, Gt,down and Gs denote the weights of the tensile zone above
the longest column (kN), the tensile zone below the longest column
(kN), and the shear zone (kN), respectively.

4. Stability calculation method for flexural toppling failure

The stability factor is an important index for evaluating the degree
of stability of slopes, and its accuracy could be increased by considering
the slope failure mechanism. Based on the failure mechanism analysis
of rock slopes that experience flexural toppling described above, a
stability factor calculation method is proposed that uses the limit
equilibrium theory. Fig. 3 shows the force system of the tensile zone
and the shear zone of a flexural toppling failure under the effects of
gravity without considering water, earthquakes, or other factors.

This analysis assumes that the Mohr-Coulomb criterion is obeyed on
the failure surface of the tensile zone after a tensile failure occurs, on
the failure surface in the shear zone, and on the contact between these
two zones.

For tensile failure in hard strata, the rupture surface should be
normal to the layer. Thus, the failure surface in the tensile zone is not
planar; it should have the shape shown in Fig. 4(b). In this paper, we
assume that failure surfaces with this shape follow the “two-plane
model”. This model differs from the “one-plane model” shown in
Fig. 4(a), which is usually applicable to relatively soft strata, in which
the failure surface is planar.

The equations of static equilibrium can be obtained in the tensile
zones of both the one-plane model and the two-plane model. Mode I is
reflected by the following:

+ + =

+ = +

+ +

+

N δ δ G β

P δ N δ G β

cos sin sin

cos sin cos

t
N φ c l δ

k
P φ ch

k t

N φ c l δ
k t t
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tan / cos

t t t t x

t t t t
(14a)

and Mode II is reflected by the following:

+ =

+ =

+

+

N G β

P G β

sin

cos

t
P φ ch

k t

N φ c l
k t

tan

tan

x

t t t t
(14b)

where Nt denotes the normal force at the base of the tensile zone (kN); P
denotes the normal force on the contact between the tensile zone and

Fig. 2. Failure mechanism of flexural toppling on rock slopes.

Fig. 3. Force analyses of the tensile zone and the shear zone within a flexural
toppling failure.
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Fig. 4. Failure surface model of flexural toppling failure.

Fig. 5. Microsoft Excel spreadsheet for performing the calculations in the proposed method.

G. Zhang et al. International Journal of Rock Mechanics and Mining Sciences 106 (2018) 319–328

322



the shear zone (kN); Gt denotes the weight of the tensile zone (kN); c
(kPa) and φ (°) denote the cohesion and friction angle of the interlayer,
respectively; and ct (kPa) and φt (°) denote the cohesion and friction
angle of the residual shear strength of the column, respectively.

The following equations for Mode I and Mode II are then deduced as
shown in Eq. (15a) and Eq. (15b), respectively:

=
− − + −
+ + −

= + ⎛
⎝
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−

N
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In the shear zone, the equations of static equilibrium are obtained as
follows:

+ = +

+ + = +
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+
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s s s s x

s s s s
(16)

where Ns denotes the normal force at the base of the shear zone (kN); Gs

denotes the weight of the shear zone (kN); F is an assumed force at the
toe of the slope (kN) that operates parallel to the failure plane; and cs
(kPa) and φs (°) denote the cohesion and frictional angle of the peak
shear strength of the column, respectively.

Thus, we obtain the following equations:

=

= − − − +
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s
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The normal force operating on the contact between the two zones
and the assumed force are obtained by combining Eqs. (15) and (17).

The parameters k and hx are two key quantities that must be cal-
culated. However, they can be determined by the trial method. Given
initial values of k and hx, F is calculated. There is inevitably a value of k
that makes F equal to zero; this value of k is the actual stability factor of
the rock slope.

Different stability factors are obtained using different values of hx.
Therefore, the true value of hx should be determined. Here, we assumed
that the initial value of hx is equal to hlim. We then obtain the stability
factor using the Solver tool in Microsoft Excel by setting F equal to zero.
Furthermore, P, Nt and Ns are obtained using Eqs. (15) and (17).
However, we should determine whether there is damage due to tension
at the position of the column with length hx. For this column, the fol-
lowing formula is obtained by employing the column theory from the
theory of elasticity:

= −
+ −−σ M

I
y

G β T T
t

sin
h

i i i1
x (18)

Fig. 6. Flow chart of the computational process.

Fig. 7. The stability factor, k, as a function of the layer inclination (H = 17m, t= 0.1m, δ=9°).
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where Ti-1 and Ti denote the tangential force of the contact interlayers
above and below the column with length hx, respectively; and Gi de-
notes the weight of the column with length hx. The necessary condition
for tensile failure of the column with length hx is calculated using the
following expression:

− +

−
+ − ⎧

⎨
⎩

≥

<

− −

−

P x P x G βh
t

G β T T
t
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6( ) 3 cos
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i i x

1
1 1,

,

(20)

and where Pi-1 and Pi denote the normal force on the contact in-
terlayers above and below the column with length hx, respectively; and
xi-1 and xi denote the moment arm lengths of the contact interlayers
above and below point O, respectively, as shown in Fig. 3. According to
Eq. (12), if the column with length hx is determined to be experiencing
tensile failure, the lower boundary of the tensile zone is moved
downward; alternatively, the lower boundary should be moved upward.
The actual value of hx should satisfy Eq. (19a), and the column im-
mediately below should satisfy Eq. (19b), which can be calculated using
the trial method. The moment arm lengths in Eq. (19) are deduced

Table 1
Properties of the rock slope and rock mass.

Geometric parameters Physical properties Shear strength Tensile strength

Slope angle (°) Crest angle (°) Density (gr/cm3) Shear zone Tensile zone Structural plane σt (MPa)

cs (kPa) φs (°) ct (kPa) φt (°) c (kPa) φ (°)

Amini et al. 80 0 2.3 98 34.8 75 28.1 / / 2.3
Linda landslide 35 − 15 2.7 200 38 70 27 150 20 12

Fig. 8. The stability factor, k, as a function of δ and β (H = 17m, t= 0.1m, η=0.5).

Fig. 9. Length of the failure surface in the tensile zone, lt, as a function of the
layer inclination.

Fig. 10. Length of the failure surface in the shear zone, ls, as a function of the
layer inclination.
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using the moment balance at point O.
The position that the normal force is applied to the interlayer due to

gravity is given in the following general form:

=x ηhi i x, (21)

where η is between 0 and 1. If η is known, we determine the failure
mode of the ith column using Eq. (19), which then determines the
boundary between the tensile zone and the shear zone. Furthermore,
the stability factor of flexural toppling is calculated using Eq. (17).

The analysis presented above demonstrates that the proposed sta-
bility method calculates the stability factor of rock slopes experiencing
flexural toppling, and it can also determine the ranges of the stability

zone, tensile zone and shear zone. Moreover, we implemented a com-
putational program in a Microsoft Excel spreadsheet with the Solver
tool, as shown in Fig. 5, and the flow chart of the process is shown in
Fig. 6.

5. Sensitivity analysis of toppling rock slope stability

Using the proposed method, several studies were performed to de-
termine the effects of different slope structures, which are expressed in
terms of their inclination, layer thickness, and slope height, on the slope
stability and failure surface lengths in the tensile zone and the shear
zone; the results are shown in Figs. 7–12. The geometric parameters of
the rock slope as well as the physical and mechanical parameters of the
rock mass are shown in Table 1 based on the values from Amini et al.28.

Fig. 7 shows that the stability factors and dip angles of the layers in
both Model Ⅰand model Ⅱapproximately follow a second-order poly-
nomial. The stability factor initially decreases and then increases with
increasing dip angle, and the position of the force operating on the
contact between the tensile zone and shear zone has a minimal impact
on the stability factor. Furthermore, the minimum value of the stability
factor occurs at a dip angle of 50° under these conditions.

Fig. 8 shows the variation in the stability factor using different va-
lues of δ and β for Models I and II. Fig. 8(a) shows that in Model I, when
the dip angle is 30° or 40°, the minimum value of the stability factor
occurs at δ=0, which is normal to the layers. The minimum value
occurs at larger δ values as the dip angle increases, which implies that
the steeper the dip angle is, the larger the angle between the possible
failure plane and the normal to the layers is. Fig. 8(b) shows that in
Model II, the stability factor increases with increasing δ at a given dip
angle, which indicates that the most likely failure surface is normal to
the layers. Therefore, we mainly concentrate on Model I in the fol-
lowing analysis.

Figs. 9 and 10 show the changes in the lengths of the failure surface
in the tensile zone and the shear zone, respectively, with variations in
the position of the inter-column force and the slope inclination for a
slope height of 17m and a layer thickness of 0.1m. The position of the
inter-column force has little impact on the length of the failure surface
in the tensile zone (Fig. 9); however, it has a significant impact in the
shear zone (Fig. 10), and its impact is reduced at high dip angles. In
general, lt decreases with increasing η, and ls has the opposite pattern.

The distributions of the tensile zone and the shear zone for different
dip angles are shown in Fig. 11. Figs. 9–11 show that the length of the
failure surface in the tensile zone first increases and then decreases with
increasing dip angle, and the length in the shear zone decreases with
increasing dip angle. The tensile zone accounts for a larger part of the
failure surface than the shear zone, which indicates that the failure
mechanism is mainly toppling failure. Fig. 11 also shows that for dip
angles larger than 40°, the angle between the failure surface and the
horizontal plane is approximately 50°.

Table 2 shows the minimum stability factor, k, as a function of the
slope height and dip angle. The impact of the dip angle on the stability
factor is the same for slopes with different heigths. The slope stability
factor decreases with increasing slope height and dip angle. Further-
more, at dip angles greater than 40°, the angle between the most likely
failure surface and the normal to the layers increases with slope height.

Fig. 12 shows the changes in the stability factor and the lengths of
the failure surface in the tensile and shear zones in response to changes
in the thickness of a single layer for a slope height of 8.5 m and a dip
angle of 40°. The relationship between the stability factor, the lengths
of the failure surface in the tensile and shear zone, and the thickness of
a single layer have the approximate characteristics of logistic curves.
The stability factor and length of the failure surface in the shear zone
have a positive relationship with the thickness of a single layer, and the
length of the failure surface in the tensile zone is negatively correlated
with the layer thickness. When the rock layer is thin, the failure mode of
the slope is mainly flexural toppling, and it gradually transitions to the

Fig. 11. Distribution of the tensile zone and the shear zone as a function of the
layer inclination.

Table 2
Minimum stability factor, k, as a function of slope height and dip angle.

h β

30° 40° 50° 60° 70° 80°

8.5 3.525 (0°a) 2.471 (0°) 2.311 (6°) 2.247
(15°)

2.183
(24°)

2.084
(36°)

17.0 1.629 (0°) 1.404 (0°) 1.381 (9°) 1.359
(21°)

1.332
(30°)

1.304
(42°)

25.5 1.167 (0°) 1.075 (3°) 1.066
(12°)

1.054
(24°)

1.037
(33°)

1.027
(42°)

a Denotes the value of δ.

Fig. 12. Values of k, lt and ls as a function of the layer thickness.
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shear-sliding mode with increasing thickness.

6. Case study

To verify the practicability of the proposed method, a real case
study, the Linda landslide (Fig. 13), was selected and analyzed using the
Microsoft Excel spreadsheet. The Linda landslide is an ancient landslide
located on the right bank of the reservoir region of the proposed Le'an
Hydropower Station approximately 5.6–6.8 km from the dam site in the
Garzê Tibetan Autonomous Prefecture, Sichuan Province, China. The
landslide's trailing edge is located at an elevation of approximately
3,765-3770 m, and the riverbed is at an elevation of 3142m. The strata
of the sliding bed are mainly composed of metasandstone and slate of
the Triassic Lianghekou group (T3lh1). The beds strike NW15°–25°,
which is nearly parallel to the slope， and dip into the slope at ap-
proximately 75°. The thickness of the strata vary from 0.2m to 1.0m
with an average of 0.3m.

The Linda landslide is a representative case of flexural toppling
failure. During its geologic history, the free face of the original slope
expanded constantly due to erosion by the Yalong River. Because of
gravity, the strata bent downward, and tensile failure occurred. With
ongoing bending deformation, the size of the tensile zone increased

gradually, and sliding occurred when the shear stress of tensile zone
exceeded the shear strength of the rock mass at the toe. Here the pro-
posed method is applied to calculate the stability factor of the anti-dip
rock slope before the Linda landslide was formed, which is the key
parameter to determine whether or not the landslide happened.
Fig. 13(b) shows the trailing edge of the landslide, where the rock mass
was bent so intensely that the strata are nearly horizontal. Rocks in the
sliding bed were bent intensely at depth as well (Fig. 13(c)). Based on
the variation in the dip with depth, the sliding bed is divided into three
zones: an area of intense deformation (dip angles＜35°), an area of
weak deformation (dip angles 35°−65°) and a normal area (dip angles
＞65°). The Linda landslide slid along the surface rather than along the
deep zone of bending. The average thickness of the landslide accumu-
lation is 38–75m, and the maximum thickness is 98m.

The geomechanical properties of the rock mass and sliding zone
were determined through laboratory tests and back analysis, and the
results are shown in Table 1. The calculations were performed in the
Microsoft Excel spreadsheet using the trial method, and the stability
factor of 0.986 occurred when δ was equal to 16°. The lengths of the
failure surface in the tensile zone and the shear zone were also calcu-
lated in the Microsoft Excel spreadsheet. Fig. 14 shows the geomecha-
nical model of the landslide with the location of the calculated failure

Fig. 13. Linda landslide; a. engineering geological plan of the Linda landslide, b. trailing edge of the landslide, c. strata in the deep of sliding bed.
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plane and the ranges of the stability zone, tensile zone and shear zone.
The sliding was calculated to occur along the slope surface, and the
calculated failure plane was near the sliding surface of the Linda
landslide. However, it should be noted that the calculated failure plane
was not completely consistent with the actual sliding surface. This was
because the proposed method assumes that the failure occurred along a
plane, whereas the sliding surface of the Linda landslide was somewhat
curved. Fig. 14 also shows that the stability zone was consistent with
the actual conditions. The calculated stability factor was less than 1.0,
which indicates that the calculated slope was in an unstable condition
and is consistent with the fact that the Linda landslide already failed.
Based on the results of this case study, the proposed method can ac-
curately calculate the stability factor and failure plane of a flexural
toppling failure.

Based on this case study, the changes in the lengths of the failure
surface in the tensile zone and shear zone with different shear strengths
of the rock mass (9MPa, 6MPa, 3MPa) were studied. The results are
shown in Fig. 14 and demonstrate that the shear strength has little ef-
fect on the range of the stability zone but has a significant effect on the
ranges of the tensile zone and shear zone. The length of the failure
surface in the tensile zone increased with increasing shear strength,
whereas the length of the failure surface in the shear zone decreased.

7. Conclusions

This paper presented a new method for calculating the stability of
rock slopes subject to flexural toppling failure. The flexural toppling
failure mode of rock slopes was described as having three steps: the first
step is the stability zone, the tensile zone forms next, and the shear zone
forms last. This proposed stability method can be used to calculate the
stability factor of rock slopes subject to flexural toppling. The ranges of
the stability zone, the tensile zone and the shear zone can also be de-
termined. Using this method, analyses of the effects of the position of
the inter-column force, the inclination and thickness of the layers, and
the height of the slope on the stability factor and the distributions of the
tensile zone and the shear zone showed that the position of the inter-
column force has almost no effect on the stability factor. In addition, the
stability factor of the rock slope decreases gradually with increasing
slope height and dip angle and decreasing layer thickness. The angle
between the possible failure surface and the normal to the layers in-
creases with increasing dip angle and slope height. Furthermore, the

thickness of the layers influences the failure mechanism, which gra-
dually transitions from shear-sliding failure to toppling failure with
decreasing layer thickness. Finally, a real case was studied, and the
results showed that this method accurately calculates the stability of
rock slopes subject to flexural toppling failure.

Acknowledgments

This research is supported by the National Natural Science
Foundation of China (Grant no. 41472265).

References

1. Ashby J. Sliding and Toppling Modes of Failure in Model and Jointed Rock Slopes
[Dissertation of Master Degree]. London: Royal School of Mines; 1971.

2. Goodman RE, Bray JW. Toppling of rock slopes. In: Proceedings of the ASCE Specialty
Conference on Rock Engineering for Foundations and Slopes, Boulder, Colorado; 2; 1976:
201–234.

3. Cruden DM. Limits to common toppling. Rev Can De Géotechnique.
1989;26(4):737–742.

4. Aydan Ö, Shimizu Y, Ichikawa Y. Effective failure modes and stability of slopes in
rock mass with two discontinuity sets. Rock Mech Rock Eng. 1989;22(3):163–188.

5. Kliche CA. Rock Slope Stability. Littleton, CO: Society for Mining, Metallurgy, and
Exploration (SME); 1999.

6. Zanbak C. Design charts for rock slopes susceptible to toppling. J Geotech Eng.
1983;109(8):1039–1062.

7. Bobet A. Analytical solutions for toppling failure. Int J Rock Mech Min Sci.
1999;36(36):971–980.

8. Sagaseta C, Sánchez JM, Cañizal J. A general analytical solution for the required
anchor force in rock slopes with toppling failure. Int J Rock Mech Min Sci.
2001;38(3):421–435.

9. Liu CH, Jaksa MB, Meyers AG. Improved analytical solution for toppling stability
analysis of rock slopes. Int J Rock Mech Min Sci. 2008;45(8):1361–1372.

10. Aydan Ö, Kawamoto T. The stability of slopes and underground openings against
flexural toppling and their stabilisation. Rock Mech Rock Eng. 1992;25(3):143–165.

11. Amini M, Majdi A, Aydan Ö. Stability analysis and the stabilisation of flexural top-
pling failure. Rock Mech Rock Eng. 2009;42(5):751–782.

12. Amini M, Majdi A, Veshadi MA. Stability analysis of rock slopes against block-flexure
toppling failure. Rock Mech Rock Eng. 2012;45(4):519–532.

13. Tatone BSA, Grasselli G. Rocktopple: a spreadsheet-based program for probabilistic
block-toppling analysis. Comput Geosci. 2010;36(1):98–114.

14. Bray JW, Goodman RE. The theory of base friction models. Int J Rock Mech Min Sci
Geomech Abstr. 1981;18(6):453–468.

15. Adhikary DP, Dyskin AV, Jewell RJ. A study of the mechanism of flexural toppling
failure of rock slopes. Rock Mech Rock Eng. 1997;30(2):75–93.

16. Adhikary DP, Dyskin AV. Modelling of progressive and instantaneous failures of
foliated rock slopes. Rock Mech Rock Eng. 2007;40(4):349–362.

17. Zhang JH, Chen ZY, Wang XG. Centrifuge modeling of rock slopes susceptible to
block toppling. Rock Mech Rock Eng. 2007;40(4):363–382.

18. Cundall PA. A computer model for simulating progressive, large-scale movements in

Fig. 14. Failure model of the Linda Landslide calculated using the proposed method (Section A-A′ in Fig. 13(a)).

G. Zhang et al. International Journal of Rock Mechanics and Mining Sciences 106 (2018) 319–328

327

http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref1
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref1
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref2
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref2
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref3
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref3
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref4
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref4
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref5
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref5
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref6
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref6
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref7
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref7
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref7
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref8
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref8
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref9
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref9
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref10
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref10
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref11
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref11
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref12
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref12
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref13
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref13
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref14
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref14
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref15
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref15
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref16
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref16


block rock systems. In: Proceedings of the Symposium of International Society of Rock
Mechanics 1(ii-b); 1971: 11–8.

19. Ishida T, Chigira M, Hibino S. Application of the distinct element method for analysis
of toppling observed on a fissured rock slope. Rock Mech Rock Eng.
1987;20(4):277–283.

20. Simoneit BRT, Schoell M, Kvenvolden KA, et al. Dem modelling of laboratory tests of
block toppling. Int J Rock Mech Min Sci Geomech Abstr. 1997;3:506–507.

21. Adachi T, Ohnishi Z, Arai K. Investigation of toppling slope failure At route 305 In
Japan. Int Soc Rock Mech. 1991.

22. Pritchard MA, Savigny KW. The heather hill landslide: an example of a large scale
toppling failure. Can Geotech J. 1991;28(3):410–422.

23. Hutchison B, Dugan K, Coulthard M. Analysis of flexural toppling at Australian bulk

minerals savage river mine. Proc. 2000.
24. Adhikary DP, Dyskin AV, Jewell RJ. Numerical modelling of the flexural deformation

of foliated rock slopes. Int J Rock Mech Min Sci Geomech Abstr. 1996;33(6):595–606.
25. Adhikary DP, Dyskin AV. A cosserat continuum model for layered materials. Comput

Geotech. 1997;20(1):15–45.
26. Adhikary DP, Dyskin AV. A continuum model of layered rock masses with non-as-

sociative joint plasticity. Int J Numer Anal Methods Geomech. 1998;22(4):245–261.
27. Alzo’ubi AK, Martin CD, Cruden DM. Influence of tensile strength on toppling failure

in centrifuge tests. Int J Rock Mech Min Sci. 2010;47(6):974–982.
28. Amini M, Gholamzadeh M, Khosravi MH. Physical and theoretical modeling of rock

slopes against block-flexure toppling failure. Int J Min Geo-Eng. 2015;49:155–171.

G. Zhang et al. International Journal of Rock Mechanics and Mining Sciences 106 (2018) 319–328

328

http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref17
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref17
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref17
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref18
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref18
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref19
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref19
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref20
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref20
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref21
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref21
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref22
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref22
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref23
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref23
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref24
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref24
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref25
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref25
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref26
http://refhub.elsevier.com/S1365-1609(17)30413-6/sbref26

	New stability calculation method for rock slopes subject to flexural toppling failure
	Introduction
	The ultimate tensile length of a cantilever slab
	Failure mechanism of flexural toppling
	Stability calculation method for flexural toppling failure
	Sensitivity analysis of toppling rock slope stability
	Case study
	Conclusions
	Acknowledgments
	References




